Robot Navigation and collision
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Focus on controller
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Local Planner DWA

Objectives

[ Local Planner / Controller

= Control robot to reach goal on a local environment
= Send command to robot

] Gloal Planner / Planner

= Build a path to reach a goal in the entire environment
= Send a path (e.g succession of waypoints) to the local planner
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Local Planner DWA

Dynamic Window Approach (DWA)

] Dieter Fox and Co in 1997

J Mainline

= Search best translation and rotation
velocities in short interval time

= Reduce the search space on
admissibles velocities

= Optimisation between
- Distance to goal
- Distance to next obstacle
- Foward Velocity
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The Dynamic Window Approach to Collision
Avoidance

Dieter Fox', Wolfram Burgard’, and Sebastian Thrun'
ept. of Computer Sceience 1, University of Bonn, 1353117 Bonn, Germany
Hept. of Computer Science, Carnegie Mellan University, Pittzburgh, P A 15213

Email: {fox wolfram }Quran_cs.uni bonn.de, thron@Qes.cmuedn

Ahstract

This paper describes the dynamic window approach to reactive collision avoid
ance for mobile robots equipped with synchro drives, The approach is derived di
rectly from the motion dynamics of the robot and is therefore particularly well
suited for robots operating at high speed. It differs from previons approaches in
that the search for commands controlling the translational and rotational velocity
of the robot is carried out directly in the space of velocities. The advantage of our
approach is that it correctly and in an elegant way incorporates the dynamics of
the robot, This is done by reducing the search space to the dynamic window, which
consists of the velocities reachahble within a short time interval. Within the dynamic
window the approach only considers admissible velocities yielding a trajectory on
which the rabot is able to stop safely. Amang these velocities the combination of
translational and rotational veloeity i= chosen by maximizing an objective function.
The objective function includes a measure of progress towards a goal location, the
forward velocity of the robot, and the distance to the next obstacle on the traje
tory, In extensive experiments the approach presented here has been found to =afely
contral our mobile robot RHING with speeds of up to 95 em/sec, in populated and

:|_\ namic environments.
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Motion Equations

Y“ ICR
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t(t,) = x(to) + v(t) - cosB(t)dt EW RN ~g
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y(t,) = yl(to) + v(t) - sin6(t)dt - e
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Tracking Control of Moving Sound Source Using Fuzzy-
Gain Scheduling of PD Control, Electronics, Jong-Ho Han
2019
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Local Planner DWA

Constant acceleration Non-constant acceleration

Motion Equations N o :
th oA, v(t) = vy + j v(t)dt
w(ty) = a(to)+ [ To(t)eos o) dt Ax = (Z2) ¢ ‘ :
to 1 28 | j
y(t,) = ylto) + : v(t)-sin0(t) dt A = vo LR ) }
o = -

o1

. t . 7 N
x(l,) = x(ty) + (-’U(tu) + /f o(t) d?‘.) |cos (ﬁ(tn) + (w(tn) + [ w(t) di) dl‘) 1

Jin J 1 J 1o

x(ty) initial pose v(ty) translational vitesse at t w(ty) rotational vitesse at t,

0(ty) initial angle v(t) translational acceleration att w(t) rotational acceleration at t
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Local Planner DWA

Motion Equations

Robot can only be
controlled by a finite
of acceleration cmd

x(t,) = x(to) —I—Z/

CP&
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Constant acceleration

v(t) = vy + .t

o= (22).
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Assuming that between small
time interval acceleration is
constant
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Local Planner DWA

Motion Equations

ln

z(t,) = x(to) + t v(t) - cosf(t)dt

y(tn) = ylto) + v(t) - sin @(t) dt
Jtg
f’(f) O‘?:) . COS (9(7‘.0) +

i1 : - I, '
x(t,) = x(to) + Z/ )+ 0 - A;) £ COS (Q(ti) +w(t;) - Ay + Wi (Ai)2> dt

¥

(w(fn) + [ a df) af{?) i

Jig

1 1

“-f»n.

x(t,) = x(to) + (’n(ffl) +

Jig Jig J 1

If At is small rotational term can
be approximated by a velocitory

w; € [w(ty), w(tiyq1) ]

o) = (o) +2/”1 cos (0(t1)+w; - (F — 1)) di

1 =0

If At is small translation term
can be approximated by a
velocitory v; € [v(t;), v(tiz1) ]
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Motion Equations
x(t,) = x(to) +[ - cos 0(t

x(t,) = x(to) —I—Z/ v; + cos ( )+wi-(f—ti))df

Integral resolution

v(t,) = z(to) + 2 (Fi(tisr))
Fi(r) = { “(sinO(;) —sin(0(t;) +w; - (E — 1)), wi # 0

v v;cos(B(t;)) - t, w; =0
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Motion Equations A

x(t,) = x(ty) + tnv(t)-cos 0(t) dt o
s
(ta) = w(lo) + > (Fillit1))
vl - . w; =0
o = [ By e -
Resulted circle equation : A
M = —%-sma(t@-) (M, My) .
M = z—i-cosﬂ(t@-) : &
a2 2 2\ 2 b
(rma) s (=) = (G) i
CRE "




Local Planner DWA

DWA Basic conciderations Space Search

4 Planner needs to determine robot Circular Admissible
velocites (v;, w;) for the next time Trajectoires velocities
interval

J2 Main steps: |
Dynamique
= Search Space Window

- Evaluation and select set of possibles
translational and rotational velocities

Optimization

= \/elocities selection

- Multi factors optimisation
* Distance to objective

. Target
* Distance to obstacle heading
* Velocity
Clearance

COC
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Local Planner DWA

DWA Space Search

[ Circular Trajectories

Space Search

Circular Admissible
Trajectoires velocities

@

Dynamique
Window
] Set of possible pair of
(v;, w;) velocities without
obstacles intersections



Local Planner DWA

DWA Space Search

J Admissible Velocities

Space Search

Circular Admissible
Trajectoires velocities

?

Dynamique
Window
1 Set of admissible velocities
allowing robot to stop
without colliding with
obstacle



Local Planner DWA

DWA Space Search
J Dynamic Window

CP&

Space Search

Circular Admissible
Trajectoires velocities

Y

Dynamique
Window

1 Set of velocities that can be
reached within a short time
given the current velocity
and the limit acceleration of

the robot



Local Planner DWA

DWA Space Search
J Space Search

Space Search

Circular Admissible
Trajectoires velocities

Y

Dynamique
Window

CP&



Local Planner DWA

DWA Optimization
] Target Heading

9 - Q Optimization

§~.
Son

......

Velocity Clearance

- "_ - -"— ] Get the angle between the
e 0 ~7) predicted robot orientation

and the vector of the

predicted robot pose and

COC target angle(v, w)




Local Planner DWA

DWA Optimization

J Clearance

Optimization
3 ¢
; AR
-" A
\ Target
"""" . heading
— *
. e
ﬂ 9 Velocity Clearance
Ny b % —
;b---------::' pg
----- 3 ~+— [ Distance to the closest
N obstacle that intersects with

the curvature dist(v, w)
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Local Planner DWA

DWA Optimization
 Velocity
Optimization
C
‘ L [
9\, WA‘!\M N

\\ | Target

i heading
—— “,

— \\ o —— Velocity Clearance

~ W Projection of the
XY translational velocity
velocity(v, w)
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DWA Optimization

d Velocities selection

Q - Q -t Q T Optimization
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(v,w) = argmax (G(v;, w; ) )
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Local Planner DWA

Ros Updated implementation of DWA

0 €Y  VancouveR

Video recording and archiving 1s
provided by the support of

ubuntu®

ROSCon 2017 https://roscon.ros.org/2017

#ROSCon #ROSCon2017 @rosorg @osrfoundation
https://vimeo.com/236487972
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Ros Update implementation of DWA

d Implementation of the DWA

1 Update The optimization function

= Updated parameters
- dist(v, w) is computed by getting the cost of the costmap
- angle(v, w) is the same
- velocity (v, w) replaced by dist;,q;(V, W) (to be confirmed)

= New parameters
- distgippaipatn (V, ) distance of the trajectory to the computed global path
- distyeq (v, w) distance to the targeted goal
- anglegiopaipatn (V, w) angle between trajectory and the global path

CP&
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Local Planner EBand
Elastic Band (EBand)

Theory and Ros implementation
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Local Planner EBand

Elastic Band

] Sean Quinlan and Qussama
Khaltib 1993

1 Mainline

= Update quickly global path taking
into account observed obstacles

= Use local deformation of global path

= Apply virtual forces
- Internal contration (elastic effect)
- External repulsion (obstacle)

COC

YON

Elastic Bands: Connecting Path Planning and Control

Sean Quinlan and Oussama Khatib

Robotics Laboratory
Computer Science Department
Stanford University

Abstract

Elastic bands are proposed as the basis for a new
Sramework to close the gap between global path planning
and real-time sensor-based vobot control. An elastic
band is a deformable collision-free path. The initial
shape of the elastic is the free path generated by a
planner. Subjected to artificial forces, the elastic band
deforms in real time to a short and smooth path that
maintains clearance from the obstacles. The elastic con-
tinues to deform as changes in the environment are
detected by sensors, enabling the robot to accommodate
uncertainties and react to unexpected and moving obsta-
cles. While providing a tight connection befween the
robot and its environment, the elastic band preserves the
global nature of the planned path. This paper outlines the
JSramework and discusses an efficient implementation
based on bubbles.

1. Introduction

It is difficult to build a robot system that executes
motion tasks autonomously. The problem has generally
been approached from two directions: path planning and
control.

Path planning uses models of the world and robot to
compute a path for the robot to reach its goal. It has been
shown that the general problem is computationally expen-
sive although much progress has been made in producing
fast planners for practical situations [1]. The output of a
path planner 1s a continuous path along which the robot

capabilities [2]. Such local or reactive behaviors operate
in real time but cannot solve the global problem of mov-
ng to an arbitrary goal.

To build a complete system we would like to combine
these two approaches. A path planner provides a global
solution to move the robot to the goal. A control system
then moves the robot along the path while handling dis-
turbance forces, small changes in the environment and
unexpected obstacles.

The conventional solution is first to convert the path to
a trajectory by time parameterization, then to track the
trajectory. Path planners are often designed to find any
feasible path, with liftle attention to its suitability for exe-
cution. Even if the time optimal parametrization is used,
the path may have abrupt changes in direction or maintain
little clearance from obstacles, requiring the robot to
move slowly. In addition, if the controller is to imple-
ment some sort of real-time obstacle avoidance scheme
then it must be able to deviate from the path. Once the
robot 1s off the path, however, the controller has no global
mformation on how to reach the goal.

2. A New Framework

We propose a new framework to close the gap
between path planning and control. The idea is to imple-
ment local sensor based motions by deforming in real
time the path computed by the planner. We call such a
deforming collision-free path an elastic band [3].

We can view this framework as a three level hierarchy.



Local Planner EBand

Elastic Band main line

[ Path generated by global planner

CP&



Local Planner EBand

ElaStic Band main line Internal contraction force

External repulsion force

[ Path generated by global planner

 Applying both internal
contraction force and external
repultion force

CP&



Local Planner EBand
External repulsion force M

Elastic Band main line

[ Path generated by global planner

 Applying both internal
contraction force and external
repultion force

J Updating repulsion force

according new obstation (e.g moving
obs.)

CoE -




Local Planner EBand

Elastic Band How to ?

1 Generate Bubbles along the path
1.  Create bubble is distance to next > const,.

2. Determine closed obstacle and calculate bubble
radius (max radius needs to be set)

3. Calculate repulsion force to the closest obstacle
(e.g (max—r)/r)

4.  Calculate internal contraction force. ﬂe.g_
normalized vector of previous and following
bubbles center)

Update bubble new position according forces

6. Remove Bubble is necessairy (to closed each
otg_er) and check that bubble raidus > robot
radius

o

[ Optimise bubbles set (remove if overlaps,
ensure 2 bubbles neighbors connectionsj

COC
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Local Planner EBand

Elastic Band How to ?

1 Generate Bubbles along the path
1.  Create bubble is distance to next > const,.

2. Determine closed obstacle and calculate bubble
radius (max radius needs to be set)

3. Calculate repulsion force to the closest obstacle
(e.g (max—r)/r)

4.  Calculate internal contraction force. ﬂe.g_
normalized vector of previous and following g Y
bubbles center)

Update bubble new position according forces

6. Remove Bubble is necessairy (to closed each
otg_er) and check that bubble raidus > robot
radius

o

[ Optimise bubbles set (remove if overlaps,
ensure 2 bubbles neighbors connectionsj
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Elastic Band How to ?

1 Generate Bubbles along the path

1. Create bubble is distance to next >
const .

2. Determine closed obstacle and
calculate bubble radius (max radius
needs to be set)

3. Calculate repulsion force to the
closest obstacle (e.g (max —r)/r)

4. Calculate internal contraction force.
(e.g normalized vector of previous
and following bubbles center)

5. Update bubble new position
according forces

6. Remove Bubble is necessairy (too
closed each other) and check that bubble
raidus > robot radius

CP&



Elastic Band How to ?

1 Generate Bubbles along the path

1. Create bubble is distance to next >
const .

2. Determine closed obstacle and
calculate bubble radius (max radius
needs to be set)

3. Calculate repulsion force to the
closest obstacle (e.g (max —r)/r)

4. Calculate internal contraction force.
(e.g normalized vector of previous
and following bubbles center)

5. Update bubble new position
according forces

6. Remove Bubble is necessairy (too
closed each other) and check that bubble ]
raidus > robot radius

CP&



Elastic Band How to ?

1 Generate Bubbles along the path
1. Create bubble is distance to next >

const . S .
2. Determine closed obstacle and :
calculate bubble radius (max radius

. o
needs to be set)
3. Calculate repulsion force to the < _
closest obstacle (e.g (max —r)/r) e
4. Calculate internal contraction force. Ny
(e.g normalized vector of previous .

and following bubbles center) /

5. Update bubble new position h
according forces * i

6. Remove Bubble is necessairy (too
closed each other) and check that bubble
raidus > robot radius

COC
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Elastic Band Usage Exemple

https://youtu.be/KJgHAhJxUrO

http://adrianboeing.blogspot.com/2012/03/elastic-band-realtime- http //WI ki.ros. Org/e ban d_| OCa |_p lanner
pathfinding.html

CPLG Copyright © Jacques Saraydaryan 33

YON


http://2.bp.blogspot.com/-5e57--eVQTA/T3SBrZ4-RzI/AAAAAAAAAfs/gGRSCgmRITA/s1600/12.png

Local Planner TEB

Local Planner TEB

Timed Elastic Band (TEB)

Theory and Ros implementation

CP&



Local Planner TEB

Timed Elastic Band

X . - Trajectory modification considering dynamic constraints
1 C. Rdsmann, W. Feiten, T. Wosch of e oions Fobats &
2 O 1 2 (exten ded |n 2017) Christoph Rosmann, Wendelin Feiten, Thomas Wosch

Siemens Corporate Technology, Intelligent Systems and Control, Germany

Frank Hoffmann, Torsten Bertram
Institute of Control Theory and Systems Engineering, Technische Universitit Dortmund, Germany

1 Mainline

" |nspired of Elastic Band but taking into
account robot dynamic contraints Abstract

The classic "elastic band" deforms a path generated by a global planner with respect to the shortest path length while
avoiding contact with obstacles. It does not take any dynamic constraints of the underlying robot into account directly.

| Act a S a We ighted m u Iti_o bj ective This contribution introduces a new approach called "timed elastic band” which explicitly considers temporal aspects of

the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The "timed elastic band"

. . .
O ptl m Isat I O n fra m eWO rk problem is formulated in a weighted multi-objective optimization framework. Most objectives are local as they depend
on a few neighboring intermediate configurations. This results in a sparse system matrix for which efficient large-scale
constrained least squares optimization methods exist.
Results from simulations and experiments with a real robot demonstrate that the approach is robust and computationally

* Use multiple objective function e e i s e e e s
DISta n Ce tO path time. Due to its modular formulation the approach is easily extended to incorporate additional objectives and constraints.
Distance to obstacle

Velocity and acceleration

Topic: Research and Development / modelling, planning and control
Keywords: Trajectory modification, timed elastic band, dynamics, kinematics, autonomous robots

1 Introduction to obtain dynamically feasible trajectories.

Motion planning is concerned with finding of a collision

Task
- Fa te St path free trajectory that respects the kinematic and dynamic mo-
tion constraints.
. . . ‘ . World Model Path Planning
In the context of motion planning this paper focuses on
local path modification assuming that an initial path has T ”””” J' ******* )

i
i | Trajectory }
i

oenerd ' a global ple r[1]. articular i
been generated by a global planner .[I} In particular in the | Local | Generation &

COC
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Local Planner TEB

[ J [ J [ J [ J
Timed Elastic Band main line -
Z)
(1 Generate configuration candidates from ——
Sta rt tO goal Initialization
R P
 Associate states and formulate Objective , |
fu nCtlon »| Associate TE'B states with L§§
> waypoints/obstacles % !
Mapping v v B(Q,T) § i
(1 Optimize functions (Hyper graph) Generate hyper-graph S |
i Hyper-graph > :
- B*(Q.1) '
A Compute translational and rotational opimize typergreph 17 |
velocity R [Rion "I
P?(Zi /ﬂi” Verify trajectory
O [Iterate] Update way point and add/delete new Al
configuration according spacial/temporal Galouate control variables
resolution to the remaining trajectory e
Obstacles Robot Odometry

&
COE

YON



Local Planner TEB

Timed Elastic Band main line

J Generate configuration candidates @ cormunors W worson
from start to goal '

Sk = (Xk» Vi Br)

1 configuration

b — [Sll ATl, Sz,ATz, ""STU ATTl—l]

Use Tuple mixing configuration and
associated duration

CP&



Local Planner TEB

Timed Elastic Band main line

J Generate configuration candidates
from start to goal

Sk = (Xk» Vi Br)

1 configuration

b — [Sll ATl, Sz,ATz, ""STU ATTl—l]

Use Tuple mixing configuration and
associated duration

CP&



Local Planner TEB

Timed Elastic Band main line

] Associate states and formulate
Objective function

n-1
V*(b) = min Z AT}
k=1

Optimization with following constraints :

h; (Sk+1,Sk) Kinematic constraints between 2 consecutive poses

Tk (Sk+1,Sk) Minimun turning radius (in case of carlike robot)

= Robot velocity and acceleration constraints

Vi(Sk+1 Sk ATy)  ay(Skt2, Sk+1, Sk AT g1, ATy,)

01 (SKr) Minimal respect of distance to obstacle

COC
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Local Planner TEB

Timed Elastic Band main line

[ Associate states and formulate Non-holonomic kenematics
Objective function

Optimization with following constraints :

= Kinematic constraints between 2 consecutive poses

Ok = Ok+1
cos(By) cos(Br+1)
[Sin(ﬁk)] X dy g1 = [Sin(ﬁkﬂ)] X dyk+1
0 0
cos(Br)] [cos(Bk+1)
hi (Sk+1,SK) = |sin(Be) | + [sin(Brs1) | X dik+1 hi(sk+1,851) =0
0 0

CP&



Local Planner TEB

Timed Elastic Band main line

1 Associate states and formulate o — ¥ vy poin
Objective function '

Optimization with following constraints :

= Robot velocity and acceleration constraints

S 2(Vgq1 — Vk)
KT AT, + ATy q

I[Xk+1 — Xk Vier1 — Vil |y (Sk» Sk+1)
AT,

Vi =

o = Press = Bi)
kT ATy

vk(5k+1'5kaTk) = [Umax — |Uk|;wmax - |(Uk|]

COC  ar(Skt2)Sk+1r Sk ATws1, ATy) = [a @l D — @] Vi (Sks1, Sk ATy) =0
vaoN k\Pk+2)°2k+1)°k» k+1» k) — max k) Ymax k ak(Sk+2;Sk+1,Sk,ATk+1,ATk) >0
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Timed Elastic Band main line

1 Associate states and formulate o — ¥ vy poin

Objective function
T~

Optimization with following constraints :

“Bir2

=  Minimal respect of distance to obstacle i

p(si, 0) Euclidian distance between current pose
and an obstacle

0k (sk) = [p(sk, 01), p(sk, 02), ..., p(Sk, Or)] = [Pmins Pmins -+ » Pmin]

aplc 0(5:) = 0



Local Planner TEB Linear Optimization
not possible

- Nolinear Function

Timed Elastic Band main line

] Associate states and formulate
Objective function

n—1
V*(b) = min Z AT}
k=1

Optimization with following constraints :

= Kinematic constraints between 2 consecutive poses

=  Minimun turning radius (in case of carlike robot)

= Robot velocity and acceleration constraints

»  Minimal respect of distance to obstacle

hi(Sk+1,8K) =0 Vi(Sk+1, S1o ATy) = 0 0r(sx) =0
Ay (Sk+2) Sk+1 Sk AT 11, ATg) = 0

COC
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Local Planner TEB \

Approximative Least-square

Timed Elastic Band main line R S

1 How to resolve the constrainte( == Approximative Least-sc
optimization ??

n—1

V*(b) = min Z AT}
k=1

Quadratic penality with scalar weight 0, and identity [

@(hy, 0n) = aphilhy, = opllhell3

v

hi(Sk+1,5K) =0

X(vki Uv) — O'v”min{(), vk}“%

v

Vi (Sk+1, SiATE) = 0

x(ay, 64) = 04llminf{0, a; }I3

A 4

Ay (Sk+2) Sk+1 Sk AT k11, ATg) -8

v

0x(sK) = 0 x(0, 6,) = 0,|lmin{0, o, 3113

YON
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Local Planner TEB C

Approximative Least-square

Timed Elastic Band main line 0 S 0s0 - Sr0

J How to resolve the constrainte( =g Approximative Least-
optimization ??

n-1
V*(b) = min Z AT}
k=1

Quadratic penality with scalar weight gy,

hk(Sk+1JSk) =0 > (p(hk: O-h) — O-h”hk”% %

Vi (Sks1, Sk, ATy) = 0 2
Norme euclidienne

Ak (Sk+2) Sk+1: Skr AT 1, ATy) = 0 |||z = v.f|1.1|2 R b

0r(sx) =0

COC
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Local Planner TEB

Timed Elastic Band main line

d How to resolve the constrainte =g  Approximative Least-square optimization
optimization ??
n-—1
V*(b) = min Z AT}
k=1
Quadratic penality with scalar weight 0, and identity [

@(hy,0n) = Uh”hk”%

hi(Sk+1,5K) =0

X(vki Uv) — O'v”min{(), vk}“%

v

Vi(Sk+1, S1o ATy) = 0

0 x(ay, 64) = 04llminf{0, a; }I3

Ay (Sk+2) Sk+1 Sk AT k11, ATy) =9

A 4

0x(sK) = 0 x(0, 6,) = 0,|lmin{0, o, 3113
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Local Planner TEB

Timed Elastic Band main line
(] How to resolve the constrainted =——)

n-—1

optimization ?? 5
P V(b) = Z[AT;% + @ (hy, op)+ x(vg, 0,) +x(ay, o4) "'X(Ok»%)]

Approximative Least-square optimization

k=1
+ X(an; Ua)

n-—1
V*(b) = min Z AT} 7
b 1 b* = argmin V(b)

Quadratic penality with scalar weight 0, and identity [

@(hy,0n) = Uh”hk”%

hi(Sk+1,5K) =0

X(vki Uv) — O'v”min{(), vk}“%

v

Vi (Sk+1, SiATE) = 0

0

Ay (Sk+2) Sk+1, Sk AT 41, AT ) >0 x(ag, a4) = agllmin{0, a; }l3

A 4

v

0x(sK) = 0 x(0, 6,) = 0,|lmin{0, o, 3113
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Local Planner TEB

Timed Elastic Band main line

J Generate configuration candidates @ cormunors W worson
from start to goal '

O

X, = (ilff,;, Ys s B’L) 1 configuration

Q) = {Xi}izo...n Set of

configurations

T = {Al 1 } 1=0...n—1 Set of duration to
reach the next
configuration

B:=(Q,T)

Use Tuple mixing
configuration and
associated duration

CP&
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Timed Elastic Band main line

J Generate configuration candidates o — ¥ vy poin
from start to goal |
T~
X; = (in, Yi s B’L) 1 configuration AT<

Q) = {Xi}izo...n Set of

configurations

T = {Al 1 } 1=0...n—1 Set of duration to
reach the next
configuration

B:=(Q,T)

Use Tuple mixing
configuration and
associated duration

CP&
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Timed Elastic Band main line

] Associate states and formulate
Objective function

f(B) = Z Vi f1r(B) Weighted _
I multiobjective function
B* = al‘%éﬂiﬂf(B) Optimization

CP&



Local Planner TEB

Timed Elastic Band main line

] Associate states and formulate
Objective function

f(B) = > wfu(B)

k

Irtarget fpm.h — €r {xdrif!'iﬂ-.j- Tprnass € S, n)

Idmin fob — €r (_dmin,j; —To,,ins € S; ’I’L)
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Local Planner TEB

Timed Elastic Band main line

] Associate states and formulate
Objective function

f(B) = > wfu(B)

ke

Irtarget fpm.h — €r '[mdm-iﬂ-.j- Tpnaxs € S, n)

Idmin f()b — er (_d*mz'n,j; _fr()ynj_n y €4 S: n)

(=) it g > 2, — e

er(x, x..€,5n) ~ { _ >

0 otherwise
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Local Planner TEB

Timed Elastic Band main line

J Associate states and formulate
Objective function —— ; g

= = = Approximation 1 ' : Y :
9_ ,,,,, Approximation 2 P R :_

. 1
= |deal constraint '

f(B) = Z"r’h-ﬁ—(B) 8 : |
k L S B S e
i|:rtarget fpat-h — {-._.11__ {:{ETH'L-H-._? . .ijm{lm E. 51 ”} n i_: :’ ______________________________
A IR PO N i

Idmin fob — €r (_dmin,j; —To,ins € S; ’I’L) 3l 5 : !

r—(Tr—€)\n , i ‘ ‘
~ ( IS'I' ) lt tr > xr-r“ — € 0 . . )(

er(x, x..€,5n) _ .
0 otherwise
Polynomial approximation of constraints
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Timed Elastic Band main line

] Associate states and formulate
Objective function

f(B) = > wfu(B)

‘]‘.
Irtarget fpm.h — €r '[mdm-iﬂ-.j- Tpnaxs € S, n)
Idmin fOb — 61" (_dqrn,q;n:j; _from,i-n ) E? S? n)
cos 3; cos ;11 2
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Local Planner TEB

Timed Elastic Band main line

] Associate states and formulate
Objective function

f(B) = > wfu(B)

‘]‘.
Irtarget fpm.h — €r '[mdm-iﬂ-.j- Tpnaxs € S, n)
Idmin fOb — 61" (_dqrn,q;n:j; _from,i-n ) E? S? n)
cos 3; cos [Fi11
R fe(X. X)) = " [ sin 3; | + | sin 3341 ] X d; 11
0 0
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Local Planner TEB

Timed Elastic Band main line

J Optimize functions (Hyper graph)

f(B) = > wfi(B)

’!'
Irtarget f}_:m.h — €Er {:dmfﬂ..j- TDmaxs € S, ”}
Idmin fob = €r (_drnin,j sy T T 0pin s € S: n) . . .
2 |V|U|t|. O!o;ec.:tlve B* = argminf(B)
cos [3; cos [Bi41 Optimization B
T fre(Xi.Xig1) = sin 3; | + | sin Bi41 X d; g1
‘ 0 0

AT,

=0 _AL)?
=1

G2o-framework

COC

YON



Local Planner TEB

Timed Elastic Band main line

J Optimize functions (Hyper graph)

= argminf(B)

f(B) = Multi Objective 5 Verify trajectory v, ®

g4 and compute >
V, @

Optimization

G2o-framework
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Local Planner TEB

[ J [ J [ J [ J
Timed Elastic Band main line
Z)
(1 Generate configuration candidates from ——
Sta rt tO goal Initialization
e 480 ... S
: Igséeé‘t /(:e{ete < B@1) Re-Initialization i
1 Associate states and formulate Objective | Toom 7 §
funCtlon :-; Associate TEB states with L§§
> waypoints/obstacles % !
i Mapping | | B(Q.) § i
(1 Optimize functions (Hyper graph) | Generate hyper-araph S |
: ! Hyper-graph B i
! - B"(Q.7) i
a Compute translational and rotational B I |
velocity D Y B
P?(Zi /ﬂi?: Verify trajectory
O [Iterate] Update way point and add/delete new A
configuration according spacial/temporal Galaulate conrol variables
resolution to the remaining trajectory I
Obstacles Robot Odometry

&
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Local Planner TEB

Timed Elastic Band ros

= £ Youlube

http://wiki.ros.org/teb_local_planner
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Pure Pursuit

Work in progress
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Pure Pursuit Regulated Pure Pursuit for Robot Path Tracking

Steve Macenski'®, Shrijit Singh?, Francisco Martin® and Jonatan Ginés®

D S ] IVI a Ce n S ki , S ‘ Si n g h , F. M a rti n "R&D Innovations, Samsung ReseafCIIL:‘}:ETI;;T?LLSI}Ide Ave, Mountain View, 94043, CA,

2Department. of Computer Science, Manipal Institute of Technology, Udupi - Karkala Rd,

d J G H 4 2 O 2 3 Eshwar Nagar, Manipal, 576104, Karnataka, India.
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Abstract

u I n S pi re d Of E I a Sti C Ba n d b ut ta ki ng The accelerated deployment of service robots have spawned a number of algorithm variations to

better handle real-world conditions. Many local trajectory planning technigues have been deployed

] . on practical robot systems successfully. While most formulations of Dynamic Window Approach
I nto a CCO u nt ro bot dyn a m IC and Model Predictive Control can progress along paths and optimize for additional criteria, the
use of pure path tracking algorithms is still commonplace. Decades later, Pure Pursuit and its

. variants continues to be one of the most commonly utilized classes of local trajectory planners.

CO ntra I ntS However, few Pure Pursuit variants have been proposed with schema for variable linear veloc-
ities - they either assume a constant wvelocity or fails to address the point at all. This paper

presents a variant of Pure Pursuit designed with additional heuristics to regulate linear velocities,

built atop the existing Adaptive variant. The Regulated Pure Pursuwit algorithm makes incre-

mental improvements on state of the art by adjusting linear velocities with particular focus on

safety in constrained and partially observable spaces commonly negotiated by deployed robots.

We present experiments with the Regulated Pure Pursuit algorithm on industrial-grade ser-

vice robots. We also provide a high-quality reference implementation that is freely included

ROS 2 Nav2 framework at https://github.com/ros-planning/navigation2 for fast evaluation.

Keywords: Service Robols, Mobile Robots, Motion Planning, Path Planning

1 Introduction always, formulated as multi-objective trajectory

generation problems to maximize criteria such as
Dynamic “-"im](__:w Approach (DWA) [1], Pure avoiding dynamic obstacle collisions on top of
Pursuit (PP) [6], and Model Predictive Control path tracking. This has made them particularly
(MPC) [2] are by far the most commonly deployed well suited for many robotics applications where
path trackers. They all have a strong heritage dynamic robot behaviors are rewarded. A great
for reliability in a wide range of environmental deal of work has been conducted on these allowing

C C conditions, DWA and MPC are often, but not
- y
pL laryam 6
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IMIodel Predictive Path
g2 Integral Controller (IMPPI)
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MModel Predictive Control MPC

[ Course references and pictures inspired of

Vode! Pmo\‘\c%\we Coc&m\ (NPC)

’ .I
‘4 g
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:
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MPC: Steve L. Brunton, University of Washington Understanding MPC: Melda Ulusoy, MathWorks
https://www.youtube.com/watch?v=YwodGM2eoy4 https://www.youtube.com/watch?v=cEWnixjNdzs
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Local Planner MPPI

MModel Predictive Control MPC

>

Prediction horizon, p

k+1 k+2 k+3 k+p

k k+1 k+2 k+3 kip

Prediction horizon, p

CPLG Copyright © Jacques Saraydaryan
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. First command of the computed
Control S‘gno‘l& Control strategy
\
K(Xy) = Upy1(Xg)

State vector at t=k

assuming y=x

64



Local Planner MPPI

MModel Predictive Control MPC

Prediction horizon, p

€k+1

Prediction horizon, p

. First command of the computed
Control Sngnalﬁ /9 Control stratacy
K(Xk) = Upy1(Xg)

State vector at t=k

ik k+1 k+2 k+3 k-i-p assuming y=x

C G Prediction horizon, p _
/ Copyright © Jacques Saraydaryan 65
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MModel Predictive Control MPC

MPC Control

Card
model

C

Optimizer
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MModel Predictive Control IVIPC
JAdvantages

= Constraints can be applied
- On command (output)
- On state of the system (input)

= Work on non-linear systems

] Hardwork

= Optimization at each steps
= Expensive

CP&
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Model Predictive Path Integ

JG. Williams, A. Aldrich, and E. A.
Theodoroul 2015

J Mainline
= MPC Approach
= New System representation
= Stochastic Trajectory Optimization

015

9
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9
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Model Predictive Path Integral Control using Covariance Variable
Importance Sampling

Grady Wil]iamsl, Andrew Aldrich', and Evangelos A. Theodorou!

Abstract— In this paper we develop a Model Predictive Path
Integral (MPPI) control algorithm based on a generalized
importance sampling scheme and perform parallel optimization
via sampling wsing a Graphics Processing Unit (GPU). The
proposed generalized importance sampling scheme allows for
changes in the drift and diffusion terms of stochastic diffusion
processes and plays a significant role in the performance of the
model predictive control algorithm. We compare the proposed
algorithm in simulation with a model predictive control version
of differential dynamic programming.

I. INTRODUCTION

The path integral optimal control framework [7], [15],
[16] provides a mathematically sound methodology for de-
veloping optimal control algorithms based on stochastic
sampling of trajectories. The key idea in this framework is
that the value function for the optimal control problem is
transformed using the Feynman-Kac lemma [2], [8] into an
expectation over all possible trajectories, which is known
as a path integral. This transformation allows stochastic
optimal control problems to be solved with a Monte-Carlo
approximation using forward sampling of stochastic diffusion

drastically simplify the system under consideration by using
a hierarchical scheme [4], and use path integral control to
generate trajectories for a point mass which is then followed
by a low level controller. Even though this approach may be
successfull for certain applications, it is limited in the kinds
of behaviors that it can generate since it does not consider the
full non-linearity of dynamics. A more efficient approach is
to take advantage of the parallel nature of sampling and use
a graphics processing unit (GPU) [19] to sample thousands
of trajectories from the nonlinear dynamics.

A major issue in the path integral control framework is
that the expectation is taken with respect to the uncontrolled
dynamics of the system. This is problematic since the proba-
bility of sampling a low cost trajectory using the uncontrolled
dynamics is typically very low. This problem becomes more
drastic when the underlying dynamics are nonlinear and
sampled trajectories can become trapped in undesirable parts
of the state space. It has previously been demonstrated
how to change the mean of the sampling distribution using
Girsanov's theorem [15], [16], this can then be used to
develop an iterative algorithm. However, the variance of

- processes.

N There have been a variety of algorithms developed in the the sampling distribution has always remained unchanged.
<I" path integral control setting. The most straight-forward appli-  Although in some simple simulated scenarios changing the
_ cation of path integral control is when the iterative feedback  variance is not necessary, in many cases the natural variance
- control law suggested in [15] is implemented in its open of a system will be too low to produce useful deviations from
—~ loop formulation. This requires that sampling takes place ‘hF currem trajectory. I.’fe\.fious m‘?‘hﬁdﬁ_hﬂf'e either dealt
= only from the initial state of the optimal control problem.  With this problem by artificially adding noise into the system
Yol A more effective approach is to use the path integral control ~ and then optimizing the noisy system [10], [14]. Or they
— framework to find the parameters of a feedback control have simply ignored the problem entirely and sampled from
‘/‘ policy. This can be done by sampling in policy parameter ~ Whatever distribution worked best [12], [19]. Althnggl_l these
! space, these methods are known as Policy Improvement approaches can be successful, both are problematic in that

C p G ] Jdl%jvudl'v-gl Path_Intaorale [141_Anothar anncoach to_finding tha the optimization either takes place with respect to the wrone S—
LYON
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Model Predictive Path Integral Controller

(JCourse references and pictures
inspired of

Core Idea .
‘l | APC Hor P
A model predictive control {MPC) algorithe / / ndom disturb
* Simulate Into the future: Run thausands of “rallouts’ f f Suy €W
J

« Each roliout bas randomly different inputs

* "Best” input « welghted sum of inputs
+ Rollout has low cost => Inpuls get large weight LS
* Update Inputs and repeat o ;
., 4
4

MPPI an introduction tutorial: F. Heetmeyer, M. Paluch,

Telluride 2021
https://www.youtube.com/watch?v=19QLyMuQ_BE
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Local Planner MPPI

MPPI

1 Core principle
= MPC Algorithm
= Simulate into the future thousand of trajectories
= Each trajectory has a randomly different command
= Selected command = Weighted sum of commands
= Update command and repeat

Cpug Copyright © Jacques Saraydaryan 70
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IMPPI
1 Core principle

System With Process Noise

dx = (f(xe t) + G(xp, )ulx,, t))dt Xk Iy e

+B(x,, t)dw

u Vk =Xk *+ Ck
- MPPI Controller -

Cost

function

non linear Term
/ fé AffFine Disturbance

dx = (f(x, ) + G(xs, ulx,, t))dt + B(x,, t)dw

\\_> AfFine Control

CPLG Copyright © Jacques Saraydaryan 71
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MPPI System With Process Noise

dx = (f(xe.t) + Glxe, )ulx,, t))dt Sensor
+B(x,, t)dw

1 Core principle

MPPI Controller
T Cost
function
- Compute candidate command
series

- Each candidate command
series is equal to :

un,t~N(ut: Zn)

Ut |Is the nominal vector
U1,t~N(Ut; 21)
""""" Up, e ~N(ug, Z3)

CPLG Copyright © Jacques Saraydaryan 73
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MPPI
dx = (f(x0, ) + G(x, Oulx,, t))dt

D Core principle +B(x,, )dw

System With Process Noise

Cost=50

MPPI Controller
Cost
function

- Compute candidate command

series
Ui o ‘
Ry e } h d seri
e A 22 Score each command series
P Vo , '
- Compute new command series
. . ZpwiOuy
Final selected command is : Uy = U +
L Wi
1
—_—
W, =¢€e 4 k
Sk Is the score of the kth series
Cpug Copyright © Jacques Saraydaryan
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System With Process Noise

dx = (f(xe.t) + Glxe, )ulx,, t))dt

D Core principle +B(x,, )dw

MPPI Controller

Cost
function
- Compute candidate command
series

............... \; / - Score each command series
0

- Compute new command serie

. . LWy Ouy,
Final selected command is : U = U + —/————

YW

1

~ =S

w, =e 2k

Sk Is the score of the kth series
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System With Process Noise

MPPI
dx = (f(x., £) + G(x,, )ulx,, t) )de

D Core principle +B(x,, Ddw

MPPI Control

MPPI Controller

Cost
N g ) function

o - Each candidate command
a2 , ' series is equal to :

vehicle

model Function » - Score each command

series

- Compute new command
serie

CPE
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MPPI

J Running examples

CPLG Copyright © Jacques Saraydaryan 77
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MPPI and ROS NAV2 = == ™ oo

motion_model string Default: DiffDrive. Type of model [DiffDrive, Omni, Ackermann)].
. . . critics string Default: None. Critics (plugins) names
D CO nfl g u rat I O n a n d Tu n I ng . iteration_count int Default 1. lteration count in MPPI algorithm. Recommend to keep as 1 :
[ | e . g N av2 M P P I CO nt r‘o I I e r ‘ batch_size int Default 1000. Count of randomly sampled candidate trajectories
. time_steps int Default 56. Number of time steps (points) in each sampled trajectory
. model_dt double Default: 0.05. Time interval (s) between two sampled points in trajectori
ve h | C Ie vx_std double Default 0.2. Sampling standard deviation for VX
m O del @ | vy _std double Default 0.2. Sampling standard deviation for VY
wz_std double Default 0.4. Sampling standard deviation for Wz
vX_max double Default 0.5. Max VX (m/s)
Vy_max double Default 0.5. Max VY in either direction, if holonomic. (m/s)
COSt Fu nct iO n vX_min double Default -0.35. Min VX (m/s)
WZ_max double Default 1.9. Max WZ (rad/s)
temperature double Default: 0.3. Selectiveness of trajectories by their costs (The closer this '
gamma double Default: 0.015. A trade-off between smoothness (high) and low energy (
MPPI visualize bool Default: false. Publish visualization of trajectories, which can slow down
Controller retry_attempt_limit int Default 1. Number of attempts to find feasible trajectory on failure for s
‘ regenerate_noises bool Default false. Whether to regenerate noises each iteration or use single
< >

CPLG Copyright © Jacques Saraydaryan https://docs.nav2.org/configuration/packages/configuring-mppic.html 78
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MPPI and ROS NAV2

. iteration_count int Default 1. lteration count in MPPI algorithm. Recommend to keep as 1 ¢
D . . . . batch_size int Default 1000. Count of randomly sampled candidate trajectories
Configuration and Tuning | _ | - |
‘ time_steps int Default 56. Number of time steps (points) in each sampled trajectory
u e . g N aV2 M P PI CO ntrOI Ie r . model_dt double Default: 0.05. Time interval (s) between two sampled points in trajectori

MPPI ‘ Batch_size

Controller
1 Model _dt
<+—>
2
3 ) k k+1 k+2 k+3 k:p >
time_steps

CPLG Copyright © Jacques Saraydaryan 79
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MPPI and Ros NAVZ critics string Default: None. Critics (plugins) names

D CO nfi g U rat i onNn an d Tu N i N g Constraint Critic This critic penalizes trajectories that have components outside of the set dynamic or kinematic

constraints

- eg Navz MPPI ContrO”er Goal Angle Critic Angle Between Robot ang Goal

Goal Critic Distance between robot and goal above which goal

This critic incentivizes navigating away from obstacles and critical collisions using either a circular
Cost F u nct |O N Obstacles Critic robot point-check or full SE2 footprint check using distances from obstacles. (inflation_layer_name,
collision_cost, collision_margin_distance)
This critic incentivizes navigating away from obstacles and critical collisions using either a circular
Cost Critic robot point-check or full SE2 footprint check using the costmap values. (inflation_layer_name,
collision_cost)

Aligns the robot to the path by looking at the integrated distance between the reference path and
the trajectory and scoring negatively for the sum total discrepancy

Path Align Critic

This critic penalizes trajectories at a high relative angle to the path, looks at the angle wrt the robot

Path Angl . . . . .
a nele and a point on the path some N points ahead and scores negatively if the angle is 'large’

This critic incentivizes making progress along the path. This is what drives the robot forward along

Path Follow Critic the path.

Prefer Forward Critic This critic incentivizes moving in the forward direction, rather than reversing

Twirling Critic This critic penalizes unnecessary ‘twisting’ with holonomic vehicles
Velocity Deadband This critic penalizes velocities that fall below the deadband threshold, helping to mitigate hardware
Critic limitations on certain platforms.

COC
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MPPI and ROS NAVZ critics string Default: None. Critics (plugins) names

Constraint Critic

_____ Commands inside Kinematic Constraints

D CO nfi g u rat i O n a n d Tu n i n g _____ Commands outside Kinematic Constraints

Kinematic Constraints

= e.g Nav2 MPPI Controller -

Cost Function

Goal Angle Critic Q Goal Critic

_‘\ V \ "~ 1 v .

W L ! , Distance between

A2 : ! oD——0 -

e Sregd robot pose and Goal \
@ a s L

\\\\

w >

t < )

N/

COC
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Local Planner MPPI

MPPI and ROS NAVZ critics string Default: None. Critics (plugins) names

 Configuration and Tuning
= e.g Nav2 MPPI Controller

Cost Function

Obstacle Critic (e.g localcostmap) Cost Critic (e.g globalcostmap)
> u AN
/ ~- /79
K— !\\J[ V/\ \.\ —&\1 il,,/ /,7 'w\\\l/;

A P LT e [T LTI TTr—
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Local Planner MPPI

MPPI and ROS NAVZ critics string Default: None. Critics (plugins) names

. . . Path Align Critic
4 Configuration and Tuning EL
= e.g Nav2 MPPI Controller LS

Cost Function

COC
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Local Planner MPPI

MPPI and ROS NAVZ critics string Default: None. Critics (plugins) names

Prefer Forward Critic

 Configuration and Tuning
= e.g Nav2 MPPI Controller

Cost Function

Twirling Critic

COC
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IMPPI and ROS N

Goal Angle Critic Goal Critic

Distance between

o B robot pose and Goal

s
4,

COC

YON
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critics string Default: None. Critics (plugins) names

Twirling Critic

&0,
< /S

Path Align Critic Path Angle Critic Prefer Forward Critic

Constraint Critic

&

Kinematic

Constraints [ ]




Local Planner MPPI

MPPI and ROS NAV2 "o paameters

controller_frequency:

. . FollowPath:
D Nav2 COnﬂgU ration plugin: "nav2_mppi_controller::MPPIController"
[ time_steps:
® 4 model_dt:
batch_size:
 vx_std:
. vy_std:
vehicle Wz std:
mOdEl @ vx_m:':\x: #0.5
vX_min:
Vy_max: #0.5
71 wz_max:
ax_max: #3.0
ax_min: #-3.5
Cost Function ay_max: 0.5 #3.0
az_max: #3.5
motion_model: "DiffDrive"
- iteration_count:
‘ prune_distance:
MPPI ° - transform_to.lerance:
temperature:
Controller gamma:
| visualize: true #false

CPLG Copyright © Jacques Saraydaryan 86
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Local Planner MPPI

reset_period: # (only in Humble)
MPPI and ROS NAVZ regenerate_noises: false
TrajectoryVisualizer:
. . trajectory_step:
(J Nav2 Configuration time_step:
AckermannConstraints:
min_turning_r:
critics: ["ConstraintCritic", "CostCritic", "GoalCritic", "GoalAngleCritic",
. "PathAlignCritic", "PathFollowCritic", "PathAngleCritic", "PreferForwardCritic"]
Cost Function ——— ConstraintCritic:
@» 7 enabled: true
AN cost_power:
e cost_weight:
GoalCritic:
enabled: true
cost_power:
cost_weight:
threshold_to_consider:
GoalAngleCritic:
g 9 . enabled: true
cost_power:
A cost_weight:
threshold_to_consider:
PreferForwardCritic:
enabled: true
cost_power:
cost_weight:
CPLG n threshold_to_consider:

YON




Local Planner MPPI

ObstaclesCritic:
MPPI and ROS NAV2
cost_power:
Ofstacle Clle kawmicatinl e, repulsion_weight:
B 4T critical_weight:
consider_footprint: false
collision_cost:

J Nav2 Configuration

collision_margin_distance:
. near_goal_distance:
Cost Function " inflation_radius: # (only in Humble)
cost_scaling_factor: # (only in Humble)
CostCritic:
Cost Critc e cunacon enabled: true

cost_power:
cost_weight:
critical_cost:
consider_footprint: true
collision_cost:
near_goal_distance:
trajectory_point_step:
PathAlignCritic:
enabled: true
cost_power:
cost_weight:
max_path_occupancy_ratio:
trajectory_point_step:
threshold_to_consider:

C p G offset_from_furthest:

YON . .
use_path_orientations: false




Local Planner MPPI

MPPI and ROS NAV2

Path Follow Critic PathFollowCritic:

enabled: true

cost_power:

cost_weight:

offset_from_furthest:
., threshold_to_consider:

; PathAngleCritic:

Path Angle Critic \ enabled: true

: cost_power:
cost_weight:
offset_from_furthest:
threshold_to_consider:
max_angle_to_furthest:
mode:

# VelocityDeadbandCritic:

# enabled: true

# cost _power: 1

# cost_weight: 35.0

# deadband_velocities: [0.05, 0.05, 0.05]

# TwirlingCritic:

# enabled: true

# twirling_cost_power: 1

# twirling_cost_weight: 10.0

J Nav2 Configuration

Cost Function

COC
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