
1

Robot Navigation and

collision avoidance

Copyright © Jacques Saraydaryan

Robot Navigation and collision avoidance

2

OutLine

 Introduction

 Mapping

 Navigation

 Collision avoidance

Copyright © Jacques Saraydaryan

Introduction: What

navigation means ?

3
Copyright © Jacques Saraydaryan

Robot Navigation and collision avoidance

What navigation means ?

4

‟ The Process of directing a vehicle so as to reach the intended destination ”
IEEE Standard 172-1983

Copyright © Jacques Saraydaryan

‟ Given partial knowledge about its environment and a goal position or a

series of positions, navigation encompasses the ability of the robot to act
based on its knowledge and sensors values so as to reach its goal positions as

efficiently and reliably as possible ”
Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

‟ Robot navigation is the problem of guiding a robot towards a goal”
Robotics, Vision and Control, Springer, Peter Corke 2011

5
Copyright © Jacques Saraydaryan

What navigation means ?

6
Copyright © Jacques Saraydaryan

Data Fusion

 Collecting all data from sensors

 Transform data into common

languages

 Merging data

 Convert into same geometric

standard

 Clean data

 Merge information into a

common representation

What navigation means ?

7
Copyright © Jacques Saraydaryan

Mapping

 Collecting all merged data

 Build a cumulative representation

of data

 Express the environment obstacle

world into a unique robot

readable data

What navigation means ?

8
Copyright © Jacques Saraydaryan

Localization

 Collect sensors data

 Collect encoders data

 Process all data regarding a given

map

 Express one or many robot

position estimations

What navigation means ?

9
Copyright © Jacques Saraydaryan

Navigation

 Collect one or many robot position

estimation

 Use the map as obstacle estimator

 Compute path form estimate

position to a targeted position

 Re-plan or react in case of new or

dynamic obstacles observation

What navigation means ?

10
Copyright © Jacques Saraydaryan

Navigation – overview –
[
{loc:{x:10,y:5,z:2}, acc:60%},
{loc:{x:5,y:50,z:20}, acc:1%},
{loc:{x:1,y:1,z:14}, acc:5%},
{loc:{x:11,y:6,z:2}, acc:20%},
...
]

{x:10,y:5,z:2} 80% OR

[
start:{x:1,y:1,z:0}
{loc:{x:1,y:10,z:0}, order:1},
{loc:{x:5,y:10,z:0}, order:2},
{loc:{x:7,y:12,z:0}, order:3},
{loc:{x:9,y:14,z:0}, order:4},
goal:{x:1,y:1,z:0}
]

What navigation means ?

11
Copyright © Jacques Saraydaryan

Navigation – overview –
[
{loc:{x:10,y:5,z:2}, acc:60%},
{loc:{x:5,y:50,z:20}, acc:1%},
{loc:{x:1,y:1,z:14}, acc:5%},
{loc:{x:11,y:6,z:2}, acc:20%},
...
]

{x:10,y:5,z:2} 80% OR

[
start:{x:1,y:1,z:0}
{loc:{x:1,y:10,z:0}, order:1},
{loc:{x:5,y:10,z:0}, order:2},
{loc:{x:7,y:12,z:0}, order:3},
{loc:{x:9,y:14,z:0}, order:4},
goal:{x:1,y:1,z:0}
]

What navigation means ?

12
Copyright © Jacques Saraydaryan

Navigation – strategies–

 Behavior-Based

 No Localization

 External goal

 e.g : wall follower

What navigation means ?

13
Copyright © Jacques Saraydaryan

Navigation – strategies–

 Behavior-Based

 No Localization

 External goal

 Reactive-Based

 No Localization

 Sensor based goal

 e.g: Braitenberg Vehicle

What navigation means ?

https://www.youtube.com/watch?v=A-fxij3zM7g

14
Copyright © Jacques Saraydaryan

Navigation – strategies–

 Behavior-Based

 No Localization

 External goal

 Reactive-Based

 No Localization

 Sensor based goal

 Map-Based

 Localization

 External goal

 E.g: Dynamic A*

What navigation means ?

https://www.youtube.com/watch?v=qziUJcUDfBc

15
Copyright © Jacques Saraydaryan

Behavior Based Architecture

What navigation means ?

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

16
Copyright © Jacques Saraydaryan

Map-Based Architecture

What navigation means ?

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

Mapping

17
Copyright © Jacques Saraydaryan

Robot Navigation and collision avoidance

Mapping

18
Copyright © Jacques Saraydaryan

Overview

 Objectives

 Put observed data into a standard view (obstacles, objects, robot)

 Use to estimate the robot position

 Use to compute a trajectory from a start point to a goal

 Summarize the collected data

 Map requirement

 Map accurancy matches the precision which the robot needs to achieve a goal

 Map accurancy matches the precision of the precision robot’s sensor.

 Complexity of the map representation has direct impact on the computational

complexity of reasoning about mapping, localization and navigation

Mapping

19
Copyright © Jacques Saraydaryan

Configuration Space

C = C𝑜𝑏𝑠 ∪
C𝑓𝑟𝑒𝑒

C𝑜𝑏𝑠

C𝑓𝑟𝑒𝑒

𝑞 = (𝑥, 𝑦, 𝜃)

𝑞𝐼

𝑞𝐺

𝑞𝐼 ∈ C𝑓𝑟𝑒𝑒 Initial configuration

𝑞𝐺 ∈ C𝑓𝑟𝑒𝑒 Goal configuration

C Set of all possible transformations
that may be applied on the robot.

𝑝𝑎𝑡ℎ 𝜏: 0,1 → C𝑓𝑟𝑒𝑒

𝜏 0 = 𝑞𝐼

𝜏 1 = 𝑞𝐺

𝜏 = {𝑞𝐼, … ,
𝑞𝑖, … ,

𝑞𝐺}

Mapping

20
Copyright © Jacques Saraydaryan

Configuration Space

Mapping

21
Copyright © Jacques Saraydaryan

Configuration Space: Accommodate Robot Size

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Mapping

22
Copyright © Jacques Saraydaryan

Configuration Space: Accommodate Robot Size

C𝑜𝑏𝑠

C𝑓𝑟𝑒𝑒

𝑅𝑜𝑏𝑜𝑡

Mapping

23
Copyright © Jacques Saraydaryan

Configuration Space: Accommodate Robot Size

Mapping

24
Copyright © Jacques Saraydaryan

Configuration Space: Accommodate Robot Size

Mapping

25
Copyright © Jacques Saraydaryan

Map representation

 Continuous

 All objects in the map are represented

 Map size depends of the objects density (sparse environment leads to low-memory map)

 Decomposition

 General decomposition and selection of environment features

 Loss of fidelity between map and real environment

 Capture useful features and discarding other

 Fixed-decomposition and adaptive decomposition

Mapping

26
Copyright © Jacques Saraydaryan

Continuous representation

 Polygone representation

 3D polygone map construction

 2D polygone map construction

Mapping

27
Copyright © Jacques Saraydaryan

Continuous representation

 Line representation (EPFL)

 (a) Real world

 (b) Representation with a set of infinite lines

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

Mapping

28
Copyright © Jacques Saraydaryan

Contineous representation

Limitations Avantages + -

 High robot location precision

 Respect the real world obstacle

position and shape

 Low cost memory in case of spare

environnent

 High computation and memory

cost in environement with high

objects density

 Path planning becomes harder

Mapping

29
Copyright © Jacques Saraydaryan

Decomposition

 Exact cell decomposition

http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html

Mapping

30
Copyright © Jacques Saraydaryan

Decomposition

 Fixed decomposition

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

Mapping

31
Copyright © Jacques Saraydaryan

Decomposition

 Adaptative decomposition

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

Mapping

32
Copyright © Jacques Saraydaryan

Decomposition

 Topological decomposition

http://www.cim.mcgill.ca/~mrl/pubs/saul/iros98.pdf

Mapping

33
Copyright © Jacques Saraydaryan

Decomposition

 Topological decomposition

http://www.cim.mcgill.ca/~mrl/pubs/saul/iros98.pdf

Mapping

34
Copyright © Jacques Saraydaryan

Decomposition

Limitations Avantages + -

 Most of the time the map size is

predictable

 Ajustable abstraction is possible

according to the targeted goal

 Lot’s of path planning algorihm exist

 Could be far from real

environment geometry and

representation

 Size of the map could grow with

the size of the environment

Mapping

35
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

Fixed cell size decomposition Resulted occupancy grid map

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑎𝑟𝑒𝑎

𝑐𝑒𝑙𝑙 𝑤𝑖𝑡ℎ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑓𝑟𝑒𝑒 𝑐𝑒𝑙𝑙

Mapping

36
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid
𝐶𝑖, 𝑗

𝑜𝑐𝑐(𝑖, 𝑗) 𝐶𝑖, 𝑗 is occupied

𝑝(𝑜𝑐𝑐 𝑖, 𝑗) Probability that 𝐶𝑖, 𝑗 is occupied [0,1]

𝑜(𝑜𝑐𝑐 𝑖, 𝑗)
Odds function has range [0, +∞)

𝑜 𝐴 =
𝑝(𝐴)

𝑝(¬𝐴)

log (𝑜 𝑜𝑐𝑐 𝑖, 𝑗) Log Odds function
has range (−∞, +∞)

 Each 𝐶𝑖, 𝑗 holds a value log (𝑜 𝑜𝑐𝑐 𝑖, 𝑗) log (𝑜 𝑜𝑐𝑐(𝑖, 𝑗)) = 𝑙𝑜𝑔
𝑝(𝑜𝑐𝑐(𝑖, 𝑗))

𝑝(¬𝑜𝑐𝑐(𝑖, 𝑗))

 Definitions

Mapping

37
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

 Updating grid

 On each observation by sensor the following assumption is made

 Reminder : Bayes law

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 ∗ 𝑝 𝐴

𝑝(𝐵)

𝐴 is occ(i, j)

𝐵 is an observation r giving a value D

𝑝 ¬𝐴|𝐵 =
𝑝 𝐵|¬𝐴 ∗ 𝑝 ¬𝐴

𝑝(𝐵)

𝑜 𝐴|𝐵 =
𝑝 𝐴|𝐵

𝑝(¬𝐴|𝐵)
=

𝑝 𝐵|𝐴 ∗ 𝑝 𝐴

𝑝 𝐵|¬𝐴 ∗ 𝑝 ¬𝐴
= 𝐵|𝐴 ∗ 𝑜 𝐴

Mapping

38
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

 Updating grid

𝐴 is occ(i, j)

𝐵 is an observation r giving a value D
𝑜 𝐴|𝐵 = 𝐵|𝐴 ∗ 𝑜 𝐴

𝑜 𝐴|𝐵 =
𝑃 𝐴 𝐵

𝑃(¬𝐴|𝐵)

Probability that 𝐶𝑖, 𝑗 is occupied knowing an observation 𝑟 = 𝐷

Probability that 𝐶𝑖, 𝑗 is not occupied knowing an observation 𝑟 = 𝐷

 𝐵|𝐴 =
𝑃 𝐵 𝐴

𝑃(𝐵|¬𝐴)

Probability that we made an observation 𝑟 = 𝐷 knowing 𝐶𝑖, 𝑗 is occupied

Probability that we made an observation 𝑟 = 𝐷 knowing 𝐶𝑖, 𝑗 is free

log (𝑜 𝐴 𝐵 = log 𝐵|𝐴 + log (𝑜 𝐴)

By extension :

Mapping

39
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

 Update Algorithm

𝐶𝑖, 𝑗 = log (𝑜(𝑜𝑐𝑐 𝑖, 𝑗))

𝑟 = 𝐷 1 Sensor (lazer) get information about the

environment r=D on the cell 𝐶𝑖, 𝑗.

2 Information about the map is collected on the

targeted cell 𝐶𝑖, 𝑗 = log(o (𝑜𝑐𝑐 𝑖, 𝑗))

3 The new believe on the cell is computed :

log (𝑜 occ(i, j) r = D

= log r = D|𝑜𝑐𝑐 𝑖, 𝑗

+ log(o (𝑜𝑐𝑐 𝑖, 𝑗))

p(r = D|𝑜𝑐𝑐 𝑖, 𝑗)

Mapping

40
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

p(r = D|𝑜𝑐𝑐 𝑖, 𝑗)

p r > D ¬𝑜𝑐𝑐 𝑖, 𝑗)

 r = D|𝑜𝑐𝑐 𝑖, 𝑗 =
p r = D 𝑜𝑐𝑐 𝑖, 𝑗)

p r = D ¬𝑜𝑐𝑐 𝑖, 𝑗)

Lazer detects at a distance D on the cell 𝐶𝑖, 𝑗.

Lazer passes through the cell 𝐶𝑖, 𝑗

Mapping

41
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

Introduction to Mobile Robotics, Mapping with Known Poses, Wolfram Burgard, Cyrill Stachniss,
Maren Bennewitz, Kai Arras

Mapping

42
Copyright © Jacques Saraydaryan

Case of study: Occupancy grid

Introduction to Mobile Robotics, Mapping with Known Poses, Wolfram Burgard, Cyrill Stachniss,
Maren Bennewitz, Kai Arras

 Using a given grid map occupancy value (e.g 0.5)

Navigation:

 Path Planning

45
Copyright © Jacques Saraydaryan

Robot Navigation and collision avoidance

Navigation: Path Planning

46
Copyright © Jacques Saraydaryan

Path Planning

 Objective:

find continuous path 𝜏 into C𝑓𝑟𝑒𝑒 from start position 𝑞𝐼 to

goal position 𝑞𝐺.

 3 main approaches

 Road Map path planning

Identify a set of routes within C𝑓𝑟𝑒𝑒

 Cell Decomposition path planning

Discrimintate between free and occupied cells

 (Exact Cell Decomposition, Adaptative Cell Decomposition)

 Environmental based path planning

Environement information drive the algorithm

Potential field, ant colony

𝑝𝑎𝑡ℎ 𝜏: 0,1 → C𝑓𝑟𝑒𝑒

𝜏 0 = 𝑞𝐼

𝜏 1 = 𝑞𝐺

𝜏 = {𝑞𝐼, … ,
𝑞𝑖, … ,

𝑞𝐺}

47
Copyright © Jacques Saraydaryan

RoadMap Planning

Navigation: Path Planning

 Methods

 Visibility Graph

 Voronoi Diagram

 Rapid Random Tree

 Properties

 Produce a graph in C𝑓𝑟𝑒𝑒 such as vertex is in

C𝑓𝑟𝑒𝑒 and edge a collision free path in C𝑓𝑟𝑒𝑒

 Mostly based on continuous map (ploygonal

representation of the environment)

48
Copyright © Jacques Saraydaryan

Visibility Graph

Navigation: Path Planning

 Objective

 Create a connectivity graph between obstacles

vertices and start/ goal position

 Algorithm

 Graph computation

 vertices : all vertices of obstacles (polygon) +

start point and goal point

 edges : edges joining all pair of vertices that can

« see » each other

 Path selection

 Short path algorithms (Dijkstra , A*)

49
Copyright © Jacques Saraydaryan

Visibility Graph

Navigation: Path Planning

𝑞𝐼

𝑞𝐺

𝑞𝐼

𝑞𝐺

𝑞𝐼

𝑞𝐺

Initial Situation 1 Vertex and associated edges

All Vertices and associated edges Resulted Graph

𝑞𝐼

𝑞𝐺

50
Copyright © Jacques Saraydaryan

Visibility Graph

Navigation: Path Planning

Limitations Avantages + -

 Very simple

 Good candidate if continuous

representation

 Fast on sparse environement

 The size depends of number of

polygon vertices

 Slow on densely populated

environment

 Robot tend to be very close to the

obstacles

51
Copyright © Jacques Saraydaryan

Voronoi Diagram

Navigation: Path Planning

 Objective

construct lines from all points that are equidistant

from 2 or more obstacles

 Algorithm

 Graph Construction

 Green et Sibson

 Shamos et Hoey

 Fortune

 Randomized incremental construction

 Path selection

 Short path algorithms (Dijkstra , A*)

52
Copyright © Jacques Saraydaryan

(a) random points, k = 25; (b) four points forming a rectangle, k = 4; (c) four walls forming
a rectangular environment; (d) rectangular environment with fives polygonal obstacles
with pruned parts of the Voronoi diagram outside the freespace of the polygonal
environment

Voronoi Diagram

http://www.mdpi.com/1424-8220/15/6/12736/htm

Navigation: Path Planning

http://alexbeutel.com/webgl/voronoi.html Usage sample:

http://alexbeutel.com/webgl/voronoi.html

53
Copyright © Jacques Saraydaryan

Voronoi Diagram

Navigation: Path Planning

 Fortune Algorithm

Sweep line : vertical line moving from the left to the

right

Beach line : parabolas compositions dividing the

portion of the plane on the left side of the sweep line

When obstacle is cross by the sweep line a parabol is

added to the beach line such as is point of this

parabol is equidistant from the obstacle to the sweep

line

Vertices of the beach line refers to parabol

intersection points

54
Copyright © Jacques Saraydaryan

Navigation: Path Planning

Limitations Avantages + -

 Allow « safe » navigation

 Executability (better for obstacle

avoidance)

 Interesting for autonomous mapping

 Non optimal navigation path

length

 Localization becomes difficult for

short range sensors

 Unnatural attraction to

openspace suboptimal path

Voronoi Diagram

55
Copyright © Jacques Saraydaryan

Probabilistic RoadMap (PRM)

Navigation: Path Planning

 Objective

Determining a path between 𝑞𝐼 and 𝑞𝐺 without

obstacle collision by getting successif random point

in C𝑓𝑟𝑒𝑒

 Algorithm

 Graph Construction

 Take random point

 Check random point in C𝑓𝑟𝑒𝑒

 Try to connect this point current graph through « a local planner »

 Path selection

 Short path algorithms (Dijkstra , A*)

56
Copyright © Jacques Saraydaryan

Rapid Random Tree (RRT)

Navigation: Path Planning

 Objective

Explore aggressively C by extending possible

locations from initial position 𝑞𝐼

 Algorithm

 Graph Construction

 Incremental algorithm

 Path selection

 Short path algorithms (Dijkstra , A*)

𝐺. 𝐼𝑛𝑖𝑡(𝑞𝐼)
Repeat

𝑞𝑟𝑎𝑛𝑑 → 𝑅𝑎𝑛𝑑𝑜𝑚_𝐶𝑜𝑛𝑓𝑖𝑔(C)

𝑞𝑛𝑒𝑎𝑟 → 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺, 𝑞𝑟𝑎𝑛𝑑

𝐺.add_edge 𝑞𝑛𝑒𝑎𝑟, 𝑞𝑟𝑎𝑛𝑑

Until 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

57
Copyright © Jacques Saraydaryan

Rapid Random Tree (RRT)

Navigation: Path Planning

𝐺. 𝐼𝑛𝑖𝑡(𝑞𝐼)
Repeat

𝑞𝑟𝑎𝑛𝑑 → 𝑅𝑎𝑛𝑑𝑜𝑚_𝐶𝑜𝑛𝑓𝑖𝑔(C)

𝑞𝑛𝑒𝑎𝑟 → 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺, 𝑞𝑟𝑎𝑛𝑑

𝐺.add_edge 𝑞𝑛𝑒𝑎𝑟, 𝑞𝑟𝑎𝑛𝑑

Until 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑞𝐼

𝑞𝐺

1st it.
𝑞rand

= 𝑞near

58
Copyright © Jacques Saraydaryan

Rapid Random Tree (RRT)

Navigation: Path Planning

𝐺. 𝐼𝑛𝑖𝑡(𝑞𝐼)
Repeat

𝑞𝑟𝑎𝑛𝑑 → 𝑅𝑎𝑛𝑑𝑜𝑚_𝐶𝑜𝑛𝑓𝑖𝑔(C)

𝑞𝑛𝑒𝑎𝑟 → 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺, 𝑞𝑟𝑎𝑛𝑑

𝐺.add_edge 𝑞𝑛𝑒𝑎𝑟, 𝑞𝑟𝑎𝑛𝑑

Until 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑞𝐼

𝑞𝐺

𝑞𝐼

𝑞𝐺

2nd it.

2nd it.
𝑞rand

= 𝑞near

59
Copyright © Jacques Saraydaryan

Rapid Random Tree (RRT)

Navigation: Path Planning

𝐺. 𝐼𝑛𝑖𝑡(𝑞𝐼)
Repeat

𝑞𝑟𝑎𝑛𝑑 → 𝑅𝑎𝑛𝑑𝑜𝑚_𝐶𝑜𝑛𝑓𝑖𝑔(C)

𝑞𝑛𝑒𝑎𝑟 → 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺, 𝑞𝑟𝑎𝑛𝑑

𝐺.add_edge 𝑞𝑛𝑒𝑎𝑟, 𝑞𝑟𝑎𝑛𝑑

Until 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑞𝐼

𝑞𝐺

𝑞𝐼

𝑞𝐺

3rd it.

10th it.

𝑞rand

𝑞near

𝑞rand=

𝑞near

At n th iterations force 𝑞rand= 𝑞G

Qu’est ce que le Cloud Computing ?

60
Copyright © Jacques Saraydaryan

Rapid Random Tree (RRT)

http://msl.cs.uiuc.edu/rrt/index.html
http://msl.cs.uiuc.edu/rrt/gallery_rigid.html

http://msl.cs.uiuc.edu/rrt/index.html

61
Copyright © Jacques Saraydaryan

Decomposition path planning

Navigation: Path Planning

 Methods

 Exact cell decomposition

 Fixed cell decomposition

 Adaptative cell decomposition

 Properties

 Map (Exact / Fixed / adaptative) gives graph

vertices

 Cell connectivities gives graph edges

62
Copyright © Jacques Saraydaryan

Cell connectivities

Navigation: Path Planning

 Exact Cell decomposition

 Direct Neighbors cell is not an obstacle

Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004

Cell connectivities

Navigation: Path Planning

 Fixed or adaptative Cell decomposing

1 2 3

4

5 6 7

8 0

All vertices are not

equidistant to

vertex 0

All vertices ARE

equidistant to

vertex 0

0
1

2
3

4
5

6

Origin Cell

Reachable Cell

Cell Connectivity

63

Cell connectivities

Navigation: Path Planning

64

Real environment
Fixed Cell Decompostion

Resulted cell connectivity graph

65
Copyright © Jacques Saraydaryan

Environmental based path planning

Navigation: Path Planning

 Methods

 Potential fields

 Ant colony

 Properties

 The environment areas drive the navigation

 Robots do not need heavy computation

66
Copyright © Jacques Saraydaryan

Potential Fields

Navigation: Path Planning

 Objective

Generate attractive and repulsive potential fieldon

the environment to drive the robot until it reaches

the goal

 Algorithm

 Obstacles generate repulsive potential field.

The more the robot is closed to the

obstacle, the higher the repusive potential

field is,

 Goal generates attractive potential field

Robotic Motion Planning: Potential
Functions,Robotics Institute 16-735, Howie Choset

67
Copyright © Jacques Saraydaryan

Potential Fields

Navigation: Path Planning

https://www.youtube.com/watch?v=DVnbp9oZZak

68
Copyright © Jacques Saraydaryan

Potential Fields

Navigation: Path Planning

https://www.youtube.com/watch?v=kpWSDyr7sM0

70
Copyright © Jacques Saraydaryan

Ant colony

Navigation: Path Planning

 Objective

Individues spread on the environment a quantity of

pheromone highlighting their path. Large number of

individues and evaporation process converge to a

solution.

 Algorithm

 Ants travel on the environment to find food,

 Once 1 ant find food, it comes back to the colony spreading pheromone

 Other ant are attracted by the pheronome and will reinforce the pheromone if

they find food

 If several path are possibles, the evaporation process lead to select the

shortest path

https://www.youtube.com/watch?v=vAnN3nZqMqk

71
Copyright © Jacques Saraydaryan

Ant colony

Navigation: Path Planning

https://www.youtube.com/watch?v=vAnN3nZqMqk

Navigation:
 Short path samples

73
Copyright © Jacques Saraydaryan

Robot Navigation and collision avoidance

74
Copyright © Jacques Saraydaryan

Wavefront: a Breadth-first search

Navigation: Path Planning

 Principle

Explore the frontier by launching a wavefront

that marks each hit cells with a distance to the

original point http://www.redblobgames.com/pathfinding
/a-star/introduction.html

𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑= 𝑞𝐼
𝑑𝑖𝑠𝑡 𝑞𝐼 = 0
𝑝𝑟𝑒𝑣 𝑞𝐼 = 𝑁𝑜𝑛𝑒

For each 𝑢

∈ 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑

𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
For each 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢

If dist v ∄
𝑎𝑑𝑑 𝑣 𝑡𝑜 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑖𝑠𝑡 𝑣 = 𝑑𝑖𝑠𝑡 𝑢 + 1
𝑝𝑟𝑒𝑣 𝑢 = 𝑣

75
Copyright © Jacques Saraydaryan

Wavefront: a Breadth-first search

Navigation: Path Planning

http://www.redblobgames.com/pathfinding/a-star/introduction.html

76
Copyright © Jacques Saraydaryan

Wavefront: a Breadth-first search

Navigation: Path Planning

https://www.youtube.com/watch?v=ylnH9GctlTA

77
Copyright © Jacques Saraydaryan

Wavefront: a Breadth-first search

Navigation: Path Planning

http://www.redblobgames.com/pathfinding/a-star/introduction.html

78
Copyright © Jacques Saraydaryan

Dijkstra’s

Navigation: Path Planning

 Principle

Explore the frontier by selecting candidate points

according to their distance to the origine. Cell

weight is taken into account in the distance

measure

79
Copyright © Jacques Saraydaryan

Dijkstra’s

Navigation: Path Planning

 Algorithm

For each 𝐶 ∈ Cfree

𝑎𝑑𝑑 𝐶 𝑡𝑜 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
f𝑠𝑐𝑜𝑟𝑒[𝐶] = +∞
𝑝𝑟𝑒𝑣[𝐶] = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

f𝑠𝑐𝑜𝑟𝑒[𝑞𝐼] = 0
Repeat

𝑢

← 𝑀𝑖𝑛𝐹𝑠𝑐𝑜𝑟𝑒(𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
For each 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 = f𝑠𝑐𝑜𝑟𝑒 𝑢 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢, 𝑣)
If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 < f𝑠𝑐𝑜𝑟𝑒[v]

f𝑠𝑐𝑜𝑟𝑒[𝑣] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒
𝑝𝑟𝑒𝑣[𝑢] = 𝑣

Until 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = ∅

80
Copyright © Jacques Saraydaryan

Dijkstra’s

Navigation: Path Planning

1

1

1

1

1

1

1

1

2

2

2 2

2

2

1

1

1

1

2

2

2 2

2

2

3

3

3 3

3

3 1

1

1

1

2

2

2 2

2

2

3

3

3 3

3

3

4

4

4

4

1

1

1

1

2

2

2 2

2

2

3

3

3 3

3

3

4

4

4

4

81
Copyright © Jacques Saraydaryan

Dijkstra’s

Navigation: Path Planning

http://www.redblobgames.com/pathfinding/a-star/introduction.html

82
Copyright © Jacques Saraydaryan

Greedy Best First Search

Navigation: Path Planning

 Principle

Explore the frontier by selecting candidate points

according to their distance estimate to the goal.

83
Copyright © Jacques Saraydaryan

Greedy Best First Search

Navigation: Path Planning

 Algorithm

For each 𝐶 ∈ Cfree

𝑎𝑑𝑑 𝐶 𝑡𝑜 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
f𝑠𝑐𝑜𝑟𝑒[𝐶] = +∞
𝑝𝑟𝑒𝑣[𝐶] = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

f𝑠𝑐𝑜𝑟𝑒[𝑞𝐼] = 0
Repeat

𝑢

← 𝑀𝑖𝑛𝐹𝑠𝑐𝑜𝑟𝑒(𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
For each 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢

f𝑠𝑐𝑜𝑟𝑒[𝑣] = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣, 𝑞𝐺
𝑝𝑟𝑒𝑣[𝑢] = 𝑣

Until 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = ∅

84
Copyright © Jacques Saraydaryan

Greedy Best First Search

Navigation: Path Planning

http://www.redblobgames.com/pathfinding/a-star/introduction.html

85
Copyright © Jacques Saraydaryan

Greedy Best First Search

Navigation: Path Planning

http://www.redblobgames.com/pathfinding/a-star/introduction.html

86
Copyright © Jacques Saraydaryan

Alorithm frontier selection

Navigation: Path Planning

Breadth-first search Greedy Best First Search Dijkstra’s

Unvisited min jump

j(u)= number of jump to
reach u
f𝒔𝒄𝒐𝒓𝒆(u)= j(u)

Unvisited min distance to
origin
g(u)= cost so far to reach u
f𝒔𝒄𝒐𝒓𝒆(u)=g(u)

Unvisited min estimate distance
distance to goal
h(u)= heuristic estimate
distance to the goal
f𝒔𝒄𝒐𝒓𝒆(u)=h(u)

𝑞𝐼

𝑞𝐺 𝑞𝐺 𝑞𝐺

𝑞𝐼 𝑞𝐼

87
Copyright © Jacques Saraydaryan

Alorithm frontier selection

Navigation: Path Planning

Breadth-first search Greedy Best First Search Dijkstra’s

Unvisited min jump

j(u)= number of jump to
reach u
f𝒔𝒄𝒐𝒓𝒆(u)= j(u)

Unvisited min distance to
origin
g(u)= cost so far to reach u
f𝒔𝒄𝒐𝒓𝒆(u)=g(u)

Unvisited min estimate distance
distance to goal
h(u)= heuristic estimate
distance to the goal
f𝒔𝒄𝒐𝒓𝒆(u)=h(u)

𝑞𝐼

𝑞𝐺 𝑞𝐺 𝑞𝐺

𝑞𝐼 𝑞𝐼

88
Copyright © Jacques Saraydaryan

A*

Navigation: Path Planning

 Principle

Combine Dijkstra’s (𝑔(𝑢))and Greedy Best First

Search (ℎ(𝑢)) frontier selection

𝑓𝑠𝑐𝑜𝑟𝑒(𝑢) = 𝑔 𝑢 + ℎ(𝑢)

ℎ(𝑢)
𝑔 𝑢

𝑞𝐼

𝑞𝐺

89
Copyright © Jacques Saraydaryan

A*

Navigation: Path Planning

 Algorithm

𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 = ∅
𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 = 𝑞𝐼
For each 𝐶 ∈ Cfree

g𝑠𝑐𝑜𝑟𝑒[𝐶] = +∞
f𝑠𝑐𝑜𝑟𝑒 𝐶 = +∞
prevNode [𝐶] = ∅

While 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 ≠ ∅
u = min f𝑠𝑐𝑜𝑟𝑒
If u == 𝑞𝐺

 reconstructPath(u)
𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡
𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡
For each 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢
 If 𝑣 ∈ 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
𝑣𝑠𝑐𝑜𝑟𝑒 = 𝑔𝑠𝑐𝑜𝑟𝑒 𝑢 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑢, 𝑣

 If 𝑣 ∉ 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡
𝑎𝑑𝑑 𝑣 𝑡𝑜 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡

ElseIf 𝑣𝑠𝑐𝑜𝑟𝑒 ≥ 𝑔𝑠𝑐𝑜𝑟𝑒 𝑣
continue

prevNode 𝑣 = u
𝑔𝑠𝑐𝑜𝑟𝑒 𝑣 = 𝑣𝑠𝑐𝑜𝑟𝑒
f𝑠𝑐𝑜𝑟𝑒 𝑣 = 𝑔𝑠𝑐𝑜𝑟𝑒 𝑣 + ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣, 𝑞𝐺

Return Failure

90
Copyright © Jacques Saraydaryan

A*

Navigation: Path Planning

𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 = ∅
𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 = 𝑞𝐼
For each 𝐶 ∈ Cfree

g𝑠𝑐𝑜𝑟𝑒[𝐶] = +∞
f𝑠𝑐𝑜𝑟𝑒 𝐶 = +∞
prevNode [𝐶] = ∅

While 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 ≠ ∅
u = min f𝑠𝑐𝑜𝑟𝑒
If u == 𝑞𝐺

 reconstructPath(u)
𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡
𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡
For each 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢
 If 𝑣 ∈ 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
𝑣𝑠𝑐𝑜𝑟𝑒 = 𝑔𝑠𝑐𝑜𝑟𝑒 𝑢 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑢, 𝑣

 If 𝑣 ∉ 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡
𝑎𝑑𝑑 𝑣 𝑡𝑜 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡

ElseIf 𝑣𝑠𝑐𝑜𝑟𝑒 ≥ 𝑔𝑠𝑐𝑜𝑟𝑒 𝑣
continue

prevNode 𝑣 = u
𝑔𝑠𝑐𝑜𝑟𝑒 𝑣 = 𝑣𝑠𝑐𝑜𝑟𝑒
f𝑠𝑐𝑜𝑟𝑒 𝑣 = 𝑔𝑠𝑐𝑜𝑟𝑒 𝑣 + ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣, 𝑞𝐺

Return Failure

91
Copyright © Jacques Saraydaryan

Dijkstra’s A*
Greedy Best

First Search

Navigation: Path Planning

93
Copyright © Jacques Saraydaryan

Exercices

Navigation: Path Planning

𝑞𝐼 𝑞𝐼

𝑞𝐺 𝑞𝐺

Wavefront Dijkstra

94
Copyright © Jacques Saraydaryan

Exercices

Navigation: Path Planning

𝑞𝐼 𝑞𝐼

𝑞𝐺 𝑞𝐺

Greedy Best First Search A*

95
Copyright © Jacques Saraydaryan

Exercices

Navigation: Path Planning

𝑞𝐼 𝑞𝐼

𝑞𝐺 𝑞𝐺

96
Copyright © Jacques Saraydaryan

Exercices

Navigation: Path Planning

𝑞𝐼 𝑞𝐼

𝑞𝐺 𝑞𝐺

References

110

References

Copyright © Jacques Saraydaryan

111

References (1/2)

 IEEE Standard 172-1983
 Introduction to Autonomous Mobile Robots, MIT Press, Roland SIEGWART, Illah R. NOURBAKHSH 2004
 Robotics, Vision and Control, Springer, Peter Corke 2011
 PLANNING ALGORITHMS, Steven M. LaValle,University of Illinois, 2006
 http://planning.cs.uiuc.edu/
 Introduction to Mobile Robotics, Mapping with Known Poses, Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai

Arras, Uni Freiburg
 http://ais.informatik.uni-freiburg.de/teaching/ss14/robotics/slides/08-occupancy-mapping-mapping-with-known-
poses.pdf

 Introduction to Mobile Robotics, Robot Motion Planning, Wolfram Burgard, cyrill stachniss, Maren Bennewitz, Kai
Arras, Uni Freiburg, 2011

 http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-planning.pdf
 Occupancy Grids, Robotics, Benjamin Kuipers
 https://www.cs.utexas.edu/~kuipers/slides/L13-occupancy-grids.pdf
 http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html
 http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node10.html
 http://www.geometrylab.de/applet-30-en
 http://cs.smith.edu/~streinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/visibility.htm
 http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
 https://fr.wikipedia.org/wiki/Diagramme_de_Vorono%C3%AF
 https://en.wikipedia.org/wiki/Voronoi_diagram
 http://www.barankahyaoglu.com/robotics/voronoirobot/
 https://en.wikipedia.org/wiki/Fortune%27s_algorithm
 http://msl.cs.uiuc.edu/rrt/index.html
 https://en.wikipedia.org/wiki/Probabilistic_roadmap
 http://msl.cs.uiuc.edu/rrt/gallery_rigid.html
 http://www.redblobgames.com/pathfinding/a-star/introduction.html
 https://en.wikipedia.org/wiki/A*_search_algorithm
 http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
 http://buildnewgames.com/astar/

Copyright © Jacques Saraydaryan

References

112

References (2/2)

 https://en.wikipedia.org/wiki/D*
 http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf

images
 http://www.ros.org/news/2013/03/
 http://library.isr.ist.utl.pt/docs/roswiki/attachments/pr2_simulator(2f)Tutorials(2f)BasicPR2Controls/rviz_move_base_div

erge.png
 http://www.youbot-store.com/developers/software/ros/youbot-ros-navigation-stack
 https://www.fsb.unizg.hr/acg/yaw_rate_estim_fig1.jpg
 http://library.isr.ist.utl.pt/docs/roswiki/costmap_2d.html
 http://joydeepb.com/Publications/biswas-rgbd11-plane-filtering.pdf
 http://www.cim.mcgill.ca/~mrl/pubs/saul/iros98.pdf
 http://www.sfbtr8.spatial-cognition.de/project/r3/HGVG/graphics/3DMzh.jpg
 http://www.mdpi.com/1424-8220/15/6/12736/htm
 http://a4academics.com/images/ProjSeminarImages/Ant-behavior-real-world.png

videos
 https://www.youtube.com/watch?v=A-fxij3zM7g
 https://www.youtube.com/watch?v=qziUJcUDfBc
 https://www.youtube.com/watch?v=zZLQ8Yh2iEE
 https://www.youtube.com/watch?v=DVnbp9oZZak
 https://www.youtube.com/watch?v=vAnN3nZqMqk
 https://www.youtube.com/watch?v=ylnH9GctlTA

Copyright © Jacques Saraydaryan

References

Jacques Saraydaryan
Jacques.saraydaryan@cpe.fr

Copyright © Jacques Saraydaryan 113

