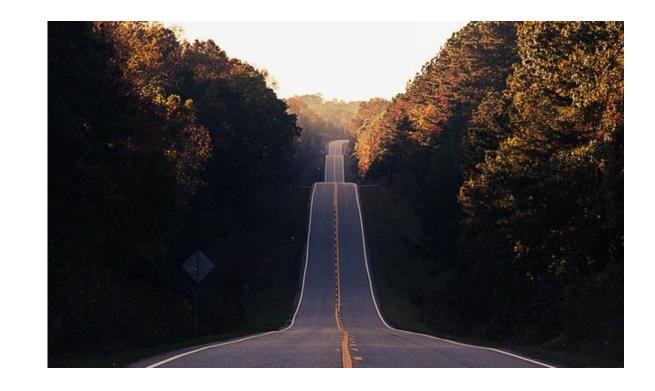
Sécurité

Sécurité des Systèmes d'Information Concepts, Organisation, Outils et Tendance

Cryptologie et Applications


Sécurité des Systèmes d'Information Concepts, Organisation, Outils et Tendance

Outline

- I. Introduction et définitions
- II. Chiffrement Symétrique
- III. Chiffrement Asymétrique
- IV. Fonction à sens unique
- V. PKI
- VI. Sécurité de l'Internet

Introduction et définition

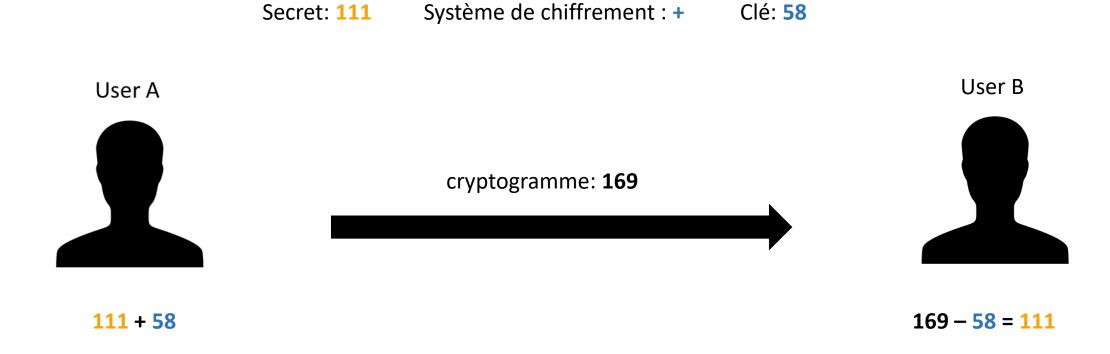
- Historique
- Définitions et concepts
- Type de chiffrement
- Méthodes de chiffrement

La cryptologie

Cryptographie

« Science permettant de créer des systèmes de chiffrement »

☐ Système de Chiffrement- Définition


« Opération de chiffrement qui transforme un texte en clair en un texte chiffré, appelé cryptogramme, au moyen d'une clé (qu'on dénomme la clé de chiffrement) »

☐ Cryptanalyse - Définition

« Science complémentaire qui consiste à déterminer certaines propriétés d'un système cryptographique dans le but de reconstituer le texte en clair, souvent en l'absence des paramètres qui sont nécessaires pour le déchiffrement »

Chiffrement

Hébraïque: Atbash

500 av JC

Méthode: Décalage alphabet

Chiffrement:

Substitution mono alphabétique

Ancien testament ou la tanakh

Chiffrement Spartiate

400 av JC

Méthode: Utilisation d'un rondin de bois pour déchiffrer

Chiffrement:

introduction du principe de clé

Chiffrement de césar 2 av JC

Méthode: Décalage alphabet (3 positions)

Chiffrement:

Substitution mono alphabétique

Chiffrement de Blaise de Vigenere (pour Henri VIII)

1500

Méthode: Décalage alphabet

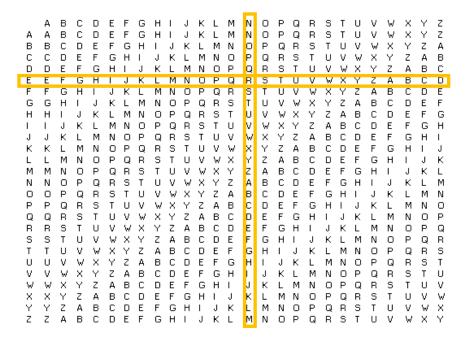
(27 positions)

Chiffrement:

Substitution polyalphabétique

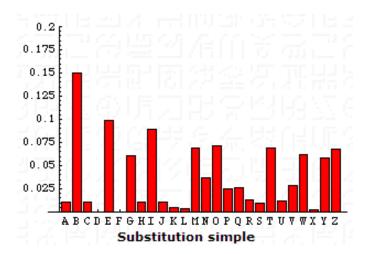
Chiffrement de Blaise de Vigenere (pour Henri VIII)

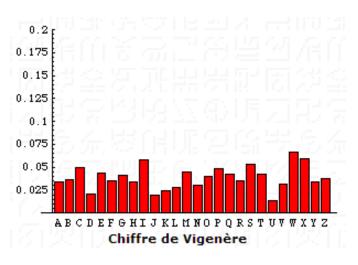
1500

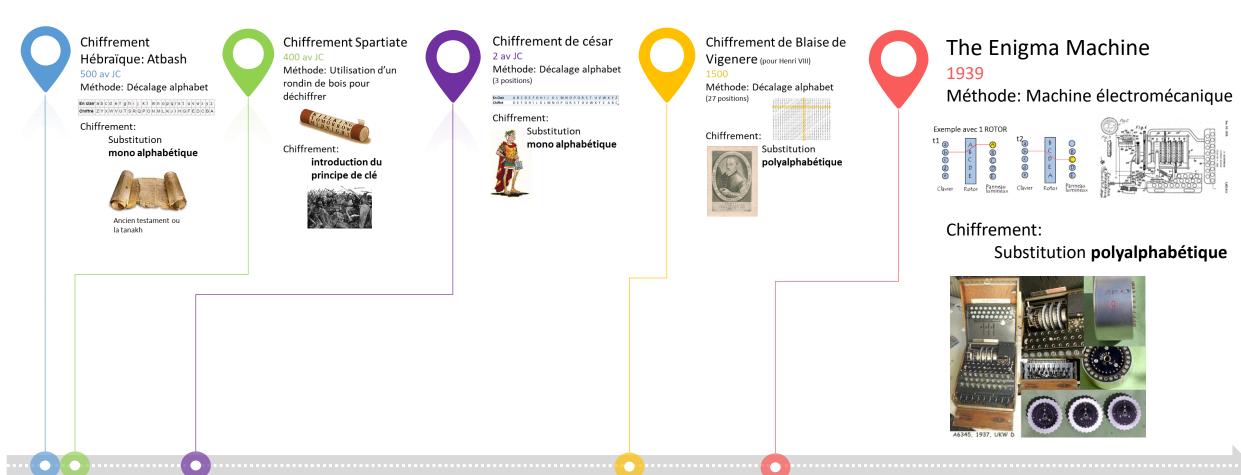

Méthode: Décalage alphabet

(27 positions)

Chiffrement:




Substitution polyalphabétique

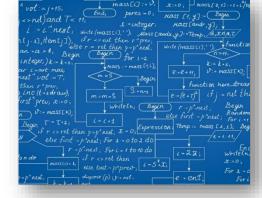

Message=NOUS...

Clé=ETESTLA Chiffrer=RHYKG PSSFQ WLAAW LIMED

Introduction et définition

- Historique
- Définitions et concepts
- Type de chiffrement
- Méthodes de chiffrement

☐ L'algorithme


Ensemble des règles décrivant comment un message est chiffré et déchiffré.

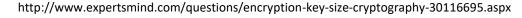
- La plupart des algorithmes de chiffrement ne sont pas secrets.
- La partie secrète (de la plupart des algorithmes de chiffrement) est la clé

☐ La clé

Clé ou cryptovariable peut être vue comme une valeur comprenant une grande séquence de bits aléatoires.

- Plus l'espace des possibles de la clé est grande
- Plus les valeurs des clés ont un caractère aléatoire
- plus la difficulté est grande pour un attaquant de trouver le secret

Impact de la taille des clés


Number of Bits in Key	Odds of Cracking: 1 in	Estimated Time to Crack*
8	256	.000032 seconds
16	65,536	.008192 seconds
24	16,777,216	2.097 seconds
32	4,294,967,296	8 minutes 56.87 seconds
56	72,057,594,037,927,900	285 years 32 weeks 1 day
64	18,446,744,073,709,600,00	8,090,677,225 Years
128	3.40282E+38	5,257,322,061,209,440,
		000,000 years
256	1.15792E+77	2.753,114,795,116,330,000,
		000,000,000,000,000,000,
		000,000,000,000 years
512	1.3408e+154	608,756,305,260,875,000,000,
		,000,000,000,000,000,000,000,
		000,000,000,000,000,0000000,
		000,000,000,000,000,000,000,
		000,000,000,000,000 years

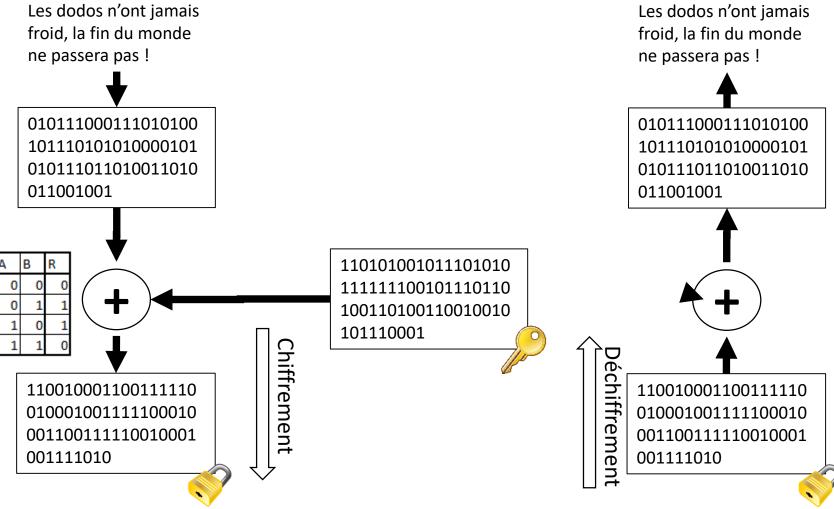
[NOTE]* Estimated Time To Crack is based on a general – purpose personal computer performing eight million guesses per second.

Algorithme secret VS Algorithme public

Principe de Kerckhoff (1883)

« Plus un algorithme est testé, utilisé, plus le nombre de vulnérabilités découvertes sera grand »

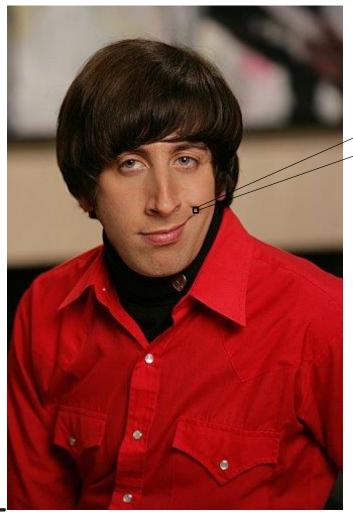
- ☐ Puissance d'un algorithme de chiffrement
 - Dépend de:
 - La méthode de chiffrement
 - La taille de la clé
 - Les vecteurs d'initialisation
 - La faculté de tous ces éléments à travailler ensemble
 - Est liée à
 - À La puissance
 - Aux ressources
 - → Nécessaires pour casser le système de chiffrement



- ☐ One-Time Pad: la pierre philosophale
 - Chiffrement parfait, considéré comme incassable
 - Gilbert Vernam 1917 (chiffrement vernam)
 - Algorithme de chiffrement XOR (ou exclusif)
 - Pourquoi incassable?
 - La clé (pad) ne doit être utilisée qu'une seule fois
 - La clé (pad) doit être aussi longue que le message
 - La clé (pad) doit être distribuée de façon sécurisée avec le destinataire

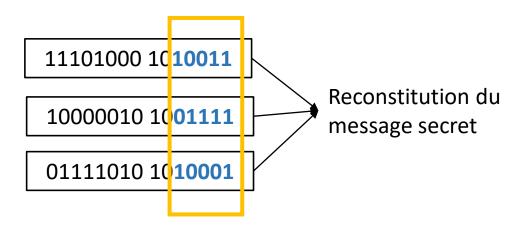
Cryptologie - One-Time Pad

Cryptologie - One-Time Pad


- ☐ Stéganographie
 - Dissimuler un message dans un autre message
 - Démarate, ancien roi de Sparte 485 BC

« il prit une tablette double, en gratta la cire, puis écrivit sur le bois même les projets de Xerxès ; ensuite il recouvrit de cire son message : ainsi le porteur d'une tablette vierge ne risquait pas d'ennuis. »

Cryptologie - Stéganographie



10101010 10101010

10101010 10**11011**

Information codée sur 16 bits Poids fort à gauche

Remplacer l'info de poids faible par message secret

Cryptologie – Pourquoi

- ☐ Assurer les services de sécurité suivants:
 - Confidentialité
 - Intégrité
 - Authentification
 - Autorisation
 - Non répudiation

Introduction et définition

- Historique
- Définitions et concepts
- Type de chiffrement
- Méthodes de chiffrement

Cryptologie – Type de chiffrement

☐ Substitution

La substitution remplace des bits, des caractères ou des blocs de caractères avec d'autres bits, caractères ou blocs de caractères

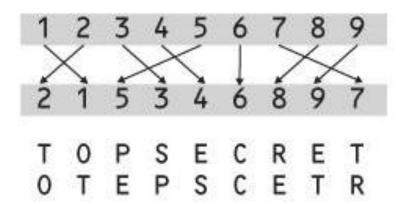
Effet d'une substitution = confusion

☐ Transposition

La transposition ne remplace pas les informations d'un message, mais déplace les informations (bits, caractères, blocs de caractères) du message original dans ce dernier

- Effet d'une transposition = diffusion
- ☐ Transposition simples
 - sensibles à l'analyse fréquentielle → utiliser à la fois la substitution et la transposition

Cryptologie – Type de chiffrement


Substitution Cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ

QWERTYUIOPASDFGHJKLZXCVBNM

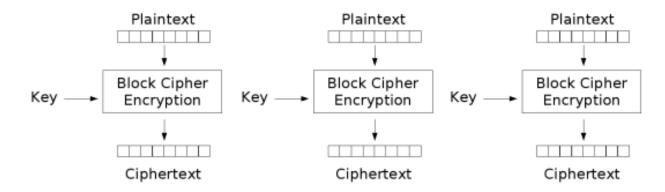
GRAY FOX HAS ARRIVED
UKQN YGB IQL QKKOCTR

Transposition Cipher

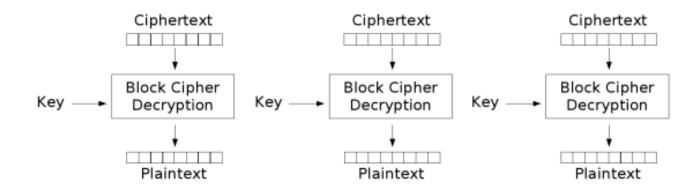
Cryptologie – Type de chiffrement

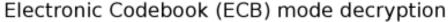
☐ Chiffrement par bloc

Le chiffrement par bloc, utilisé pour le chiffrement et le déchiffrement, divise le message en blocs de bits puis chiffre / déchiffre ces blocs les uns après les autres


☐ Chiffrement par flux

Le chiffrement traite le message comme un flux et chaque bit du message original est chiffré (fonction mathématique)





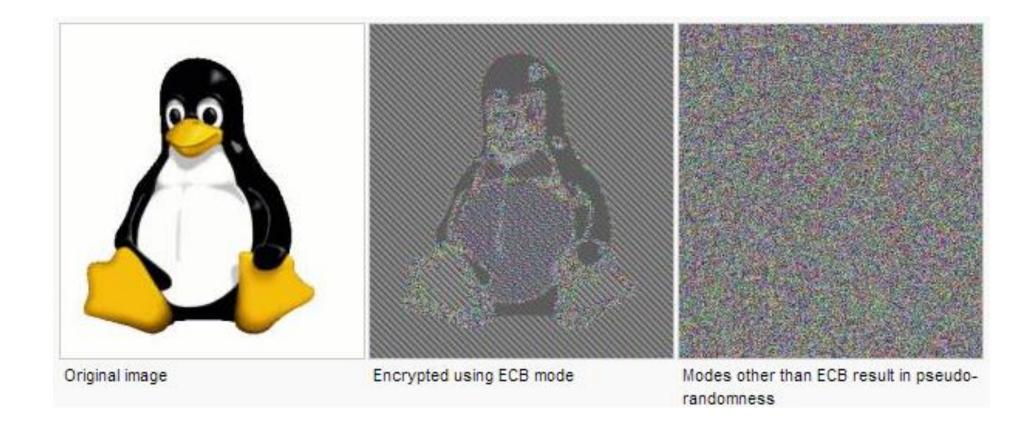
Cryptologie – Chiffrement par blocs

Electronic Codebook (ECB) mode encryption

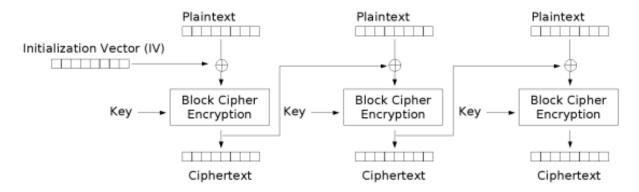
Cryptologie – Chiffrement par blocs

- ☐ Chiffrement par bloc
 - Chaque bloc est chiffré indépendamment
 - Notation *C=E(P,K)*
 - Pour un ensemble de message P_0, P_1, P_m

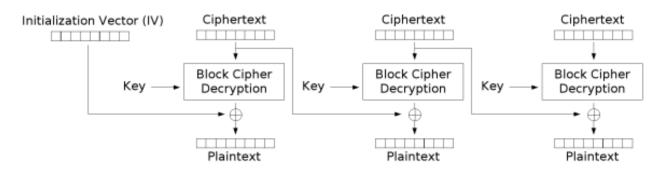
$$C_0 = E(P_0, K)$$
 $P_0 = D(C_0, K)$
 $C_1 = E(P_1, K)$ $P_1 = D(C_1, K)$
 $C_2 = E(P_2, K)$ $P_2 = D(C_2, K)$


Mêmes blocs de messages sont chiffrés de la même façon

→ Divulgation d'information perte de confidentialité



Cryptologie - Chiffrement par blocs



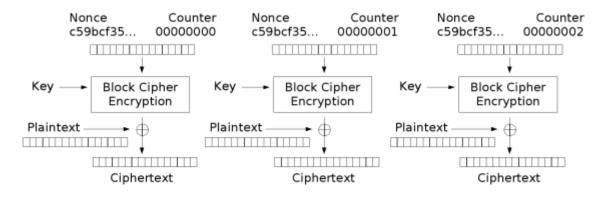
Cryptologie – Chiffrement par blocs

Cipher Block Chaining (CBC) mode encryption

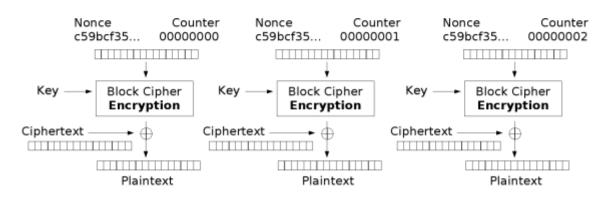
Cipher Block Chaining (CBC) mode decryption

Cryptologie - Chiffrement par blocs

- ☐ Chiffrement par bloc
 - Blocs sont chainés entre eux
 - Utilisation d'un vecteur d'initialisation (VI) pour initialiser
 - VI aléatoire mais pas nécessairement secret


Chiffrement	Déchiffrement
$C_O = E(IV \oplus P_{O'}K)$	$P_0 = VI \oplus D(C_0, K)$
$C_1 = E(C_0 \oplus P_1, K)$	$P_1 = C_0 \oplus D(C_1, K)$
$C_2 = E(C_1 \oplus P_2, K)$	$P_2 = C_1 \oplus D(C_2, K)$

- Chiffrement séquentiel -> lenteur
- Découpage du message en multiple de la taille des blocs chiffrés



Cryptologie – Chiffrement par blocs

Counter (CTR) mode encryption

Counter (CTR) mode decryption

Cryptologie – Chiffrement par blocs

- ☐ Chiffrement par bloc
 - Utilise le chiffrement par bloc comme un chiffrement par flux
 - Peut être utilisé pour des accès aléatoires

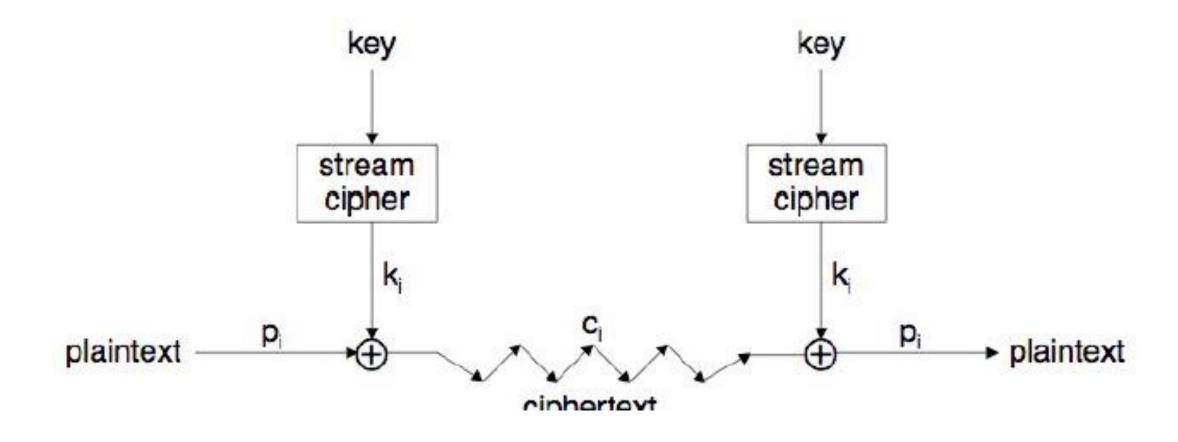
Chiffrement Déchiffrement

$$C_0 = P_0 \oplus E(VI, K)$$
 $P_0 = C_0 \oplus E(VI, K)$

$$C_1 = P_1 \oplus E(VI+1,K)$$
 $P_1 = C_1 \oplus E(VI+1,K)$

$$C_2=P_2 \oplus E(VI+2,K)$$
 $P_2=C_2 \oplus E(VI+2,K)$

Chiffrement en parallèle possible



- ☐ Généralisation de l'idée du one-time pad
- ☐ Initialisé avec une clé courte
- ☐ Clé est transformée en un keystream
- ☐ XOR pour le chiffrement et le déchiffrement

- ☐ Décalage de registre
 - Chiffrement par flux largement basé sur le décalage de registre
 - Contient une boucle de rétroaction (feedback)
 - Utilisation de fonction de rétroaction linéaire ou non

(Linear Feedback Shift register)

Clef secrète K, composée de k mots de n bits, K[0], ..., K[k-1].

T tableau temporaire S tableau de valeurs |K| taille du vecteur K

Initialisation.

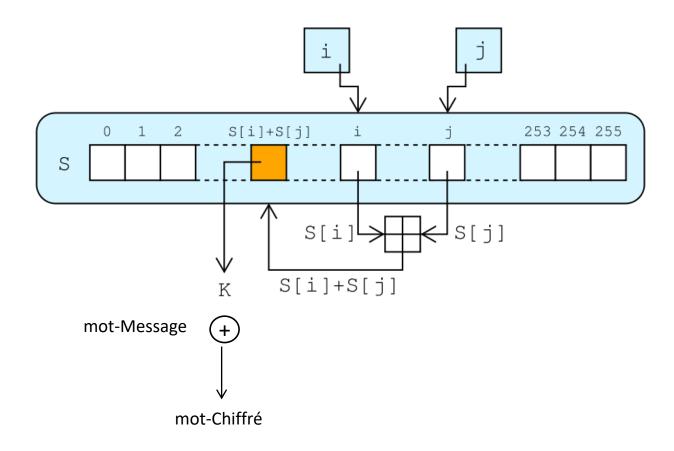
```
Pour i de 0 à 255,

S[i] \leftarrow i

T[i]=K[i \mod (|K|)]

j=0

Pour i =0 à 255 faire


j \leftarrow (j + S[i] + T[i]) \mod 256

échanger S[i] et S[j]
```

Génération de la suite chiffrante.

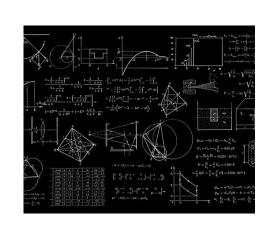
```
i = j = 0
```

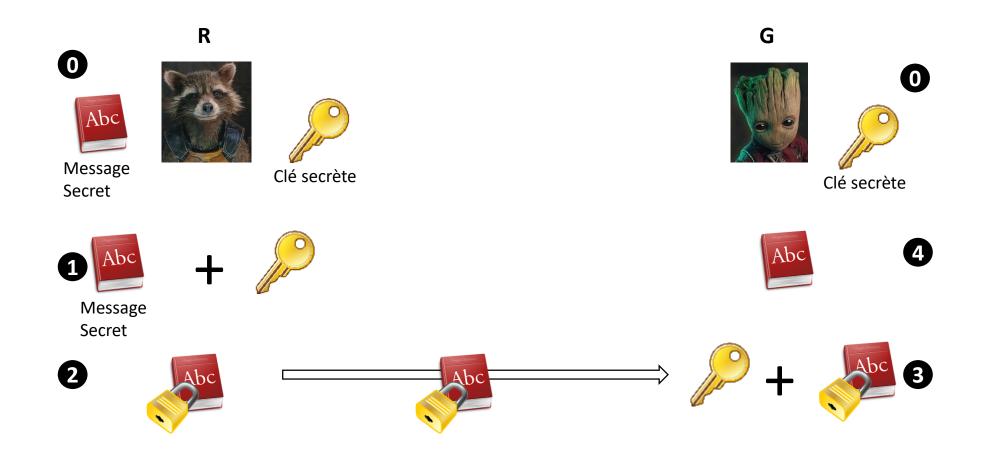
- Répéter
 - i ← (i+1) mod 256
 - j ← (j+S[i]) mod 256
 - échanger S[i] et S[j].
 - Retourner S[S[i] + S[j]] (sous clé)

- □ Avantages
 - Très rapide
 - Adapté aux applications temps réelles

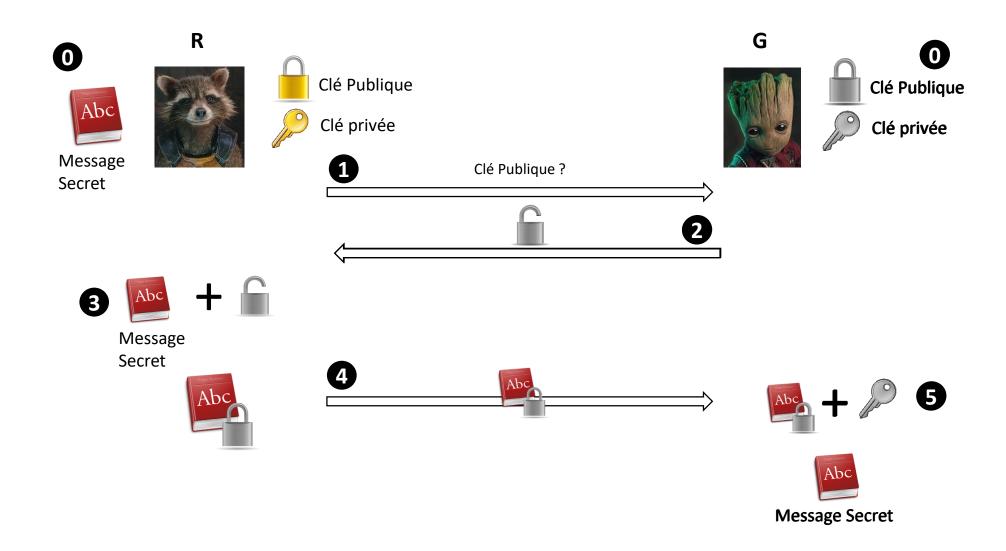
- ☐ Inconvénients
 - Propagation d'erreurs (problème de synchronisation)
 - Sécurité difficile à atteindre (pas de preuve)

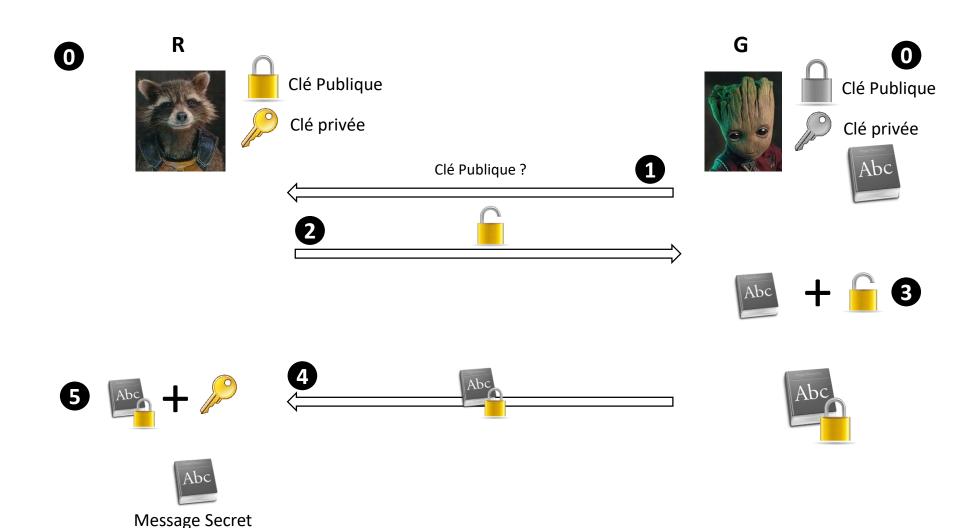
Introduction et définition


- Historique
- Définitions et concepts
- Type de chiffrement
- Méthodes de chiffrement

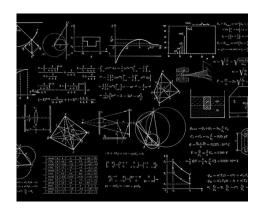

Cryptologie - Méthodes de chiffrement

- ☐ Symétrique
 - Secret partagé (clé symétrique)


- ☐ Asymétrique
 - Utilisation de clé publique et clé privée

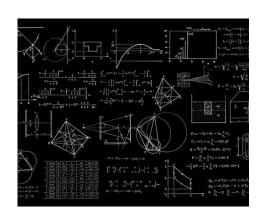


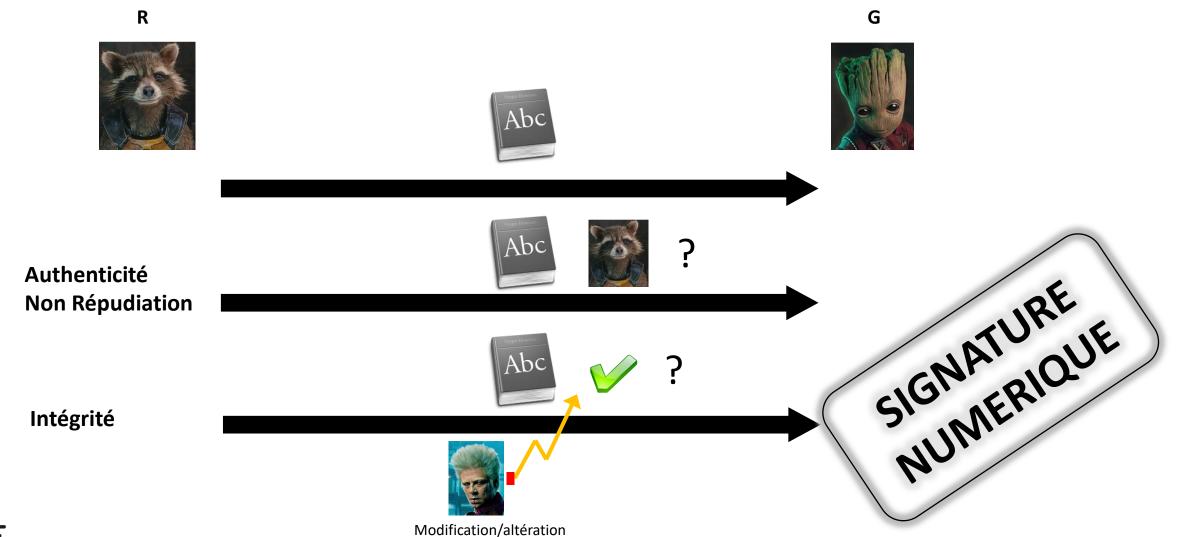
Cryptologie - Chiffrement asymétrique à vous de jouer


R G M

G a besoin de récupérer des informations de R pour les transmettre à M

Cryptologie – Méthodes de chiffrement


- ☐ Symétrique
 - Avantages
 - Plus rapide que les chiffrements asymétriques
 - Difficile à casser si grande taille de clé
 - Inconvénients
 - Demande un mécanisme permettant de délivrer les clés
 - Chaque pair d'utilisateur à besoin d'une clé unique, problème de management des clés
 - Garantit la confidentialité mais pas l'authenticité et la non répudiation



Cryptologie – Méthodes de chiffrement

- ☐ Asymétrique
 - Avantages
 - Distribution des clés plus facile
 - Meilleur passage à l'échelle
 - Garantit la confidentialité mais aussi l'authenticité et la non répudiation
 - Inconvénients
 - Bien plus lent que le chiffrement symétrique
 - Demande beaucoup de ressources (calcul mathématique complexe)

R Signature numérique Clé Publique Clé privée Document signé numériquement Abc par R **HASH** Clé Privée de R

G

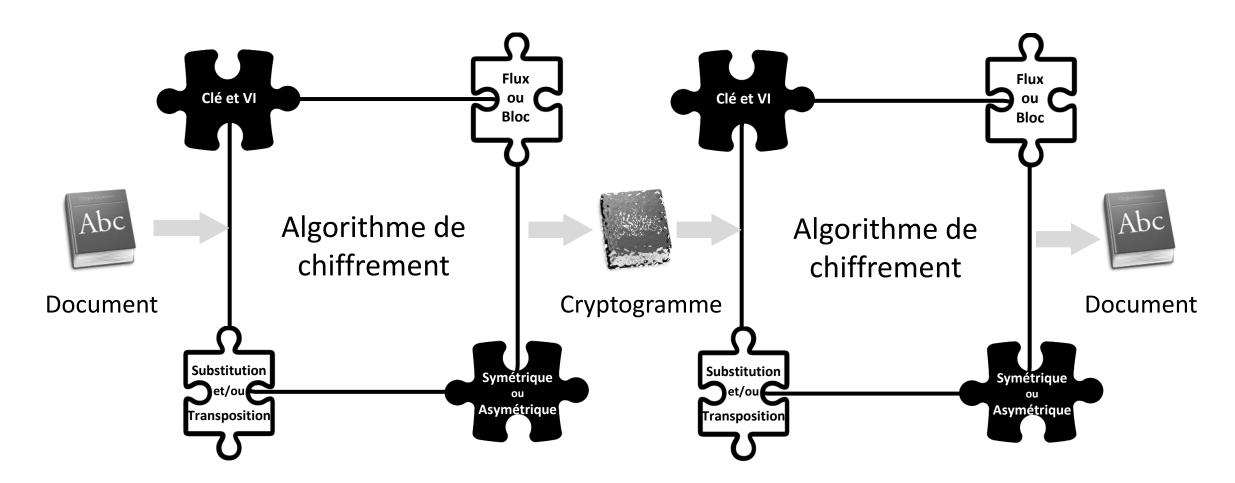
Vérification Signature numérique

Clé Publique de **R**

Je chiffre avec une clé publique:

Seules les personnes possédant la clé privée associée peuvent lire le message

Je chiffre avec une clé privée:


Toutes les personnes possédant la clé publique peuvent lire le message

Confidentialité

Introduction et définition: Bilan

Chiffrement Symétrique

- Bilan
- DES / 3 DES
- AES

Chiffrement symétrique

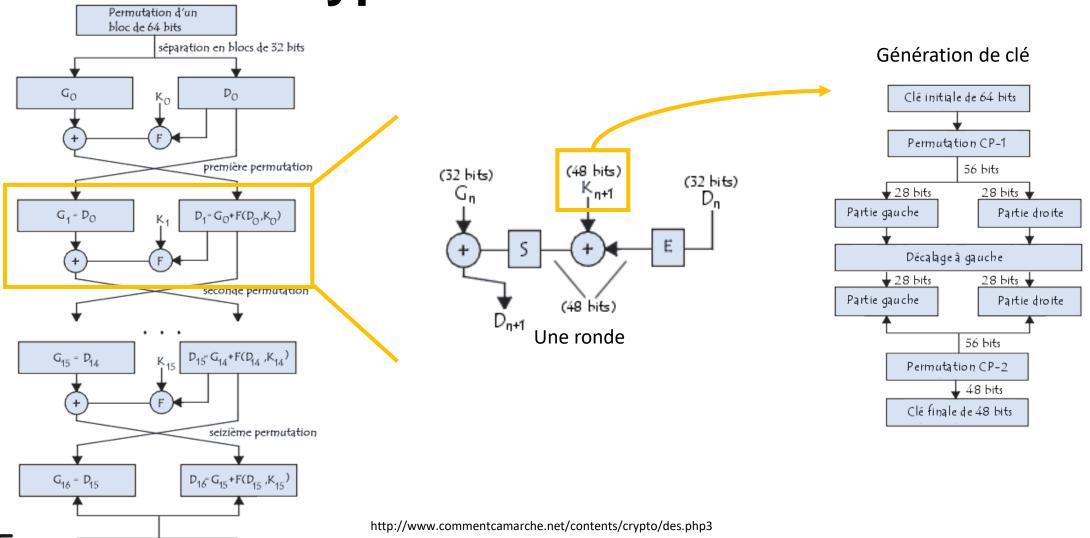
- Le plus couramment utilisé
- Principal avantage lié à la rapidité et la complexité liée à la taille de la clé
- Utilisation du chiffrement asymétrique pour la distribution de clés (voir partie Chiffrement Hybride)
- Exemples d'algorithmes de chiffrement
 - Data Encryption Standard (DES) / 3DES (triple DES)
 - Blowfish
 - Twofish
 - IDEA (Internation Data Encryption Algorithme)
 - RC4,RC5,RC6
 - AES
 - SAFER
 - Serpent

Chiffrement Symétrique

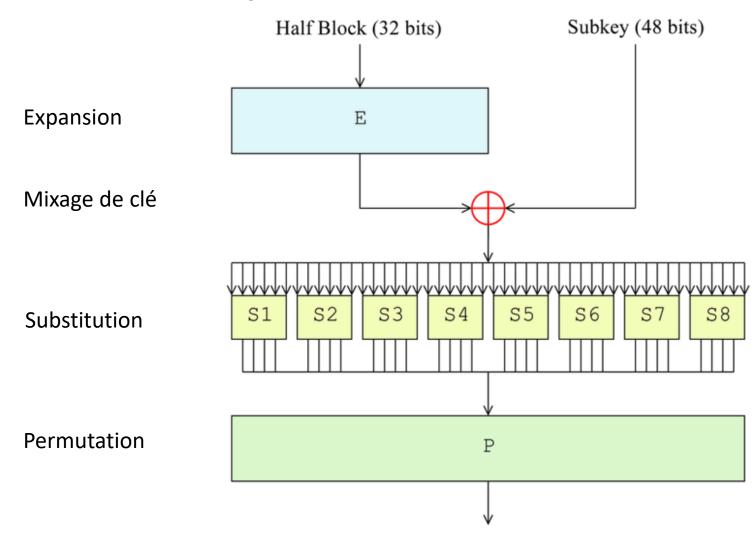
- Bilan
- DES / 3 DES
- AES

DES-Data Encryption Standard

- IBM 1977, Chiffrement symétrique
- Chiffrement par blocs (64 bits)
- Utilisation d'une clé de 64 bits (56 vrai clé 8 parité)
- Substitution et permutation
- Algorithme
 - 1. Fractionnement du texte en blocs de 64 bits (8 octets);
 - 2. Permutation initiale des blocs ;
 - 3. Découpage blocs en deux parties: gauche et droite, nommées G et D;
 - 4. Etapes de permutation et de substitution répétées 16 fois (appelées rondes) ;
 - 5. Recollement des parties gauche et droite puis permutation initiale inver



Permutation inverse

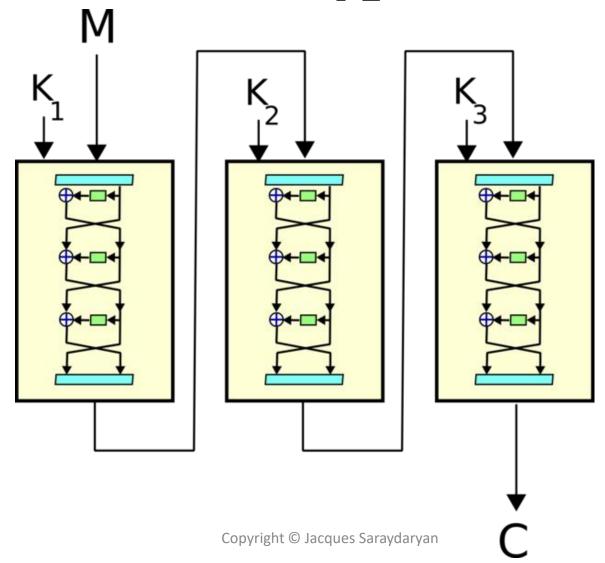

du bloc de 64 bits

DES-Data Encryption Standard

Copyright © Jacques Saraydaryan

DES-Data Encryption Standard

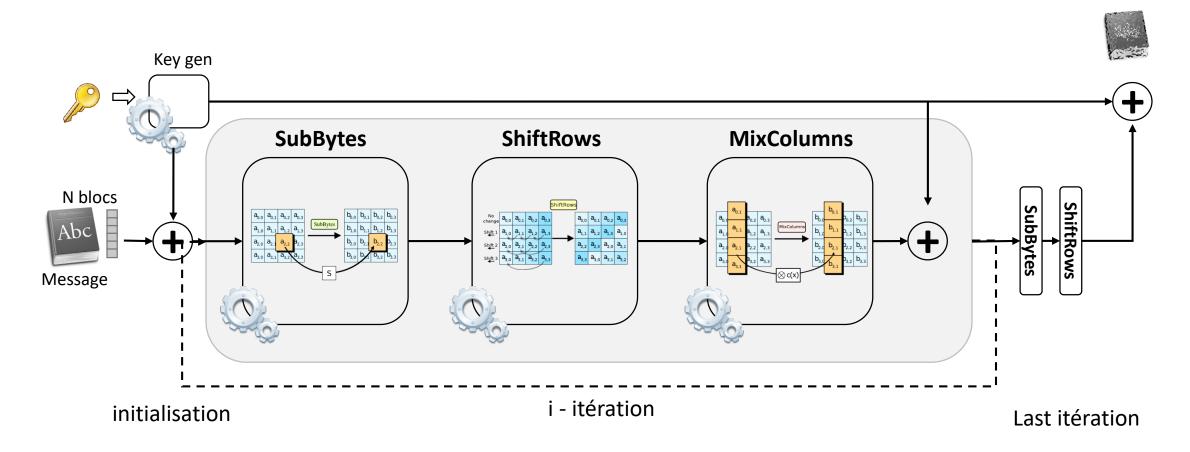
Fonction F (Feistel) de DES

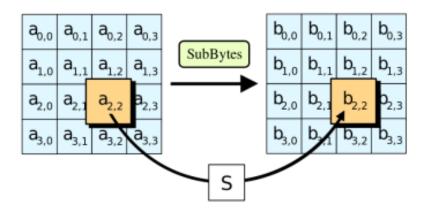

3 DES-Triple Data Encryption Standard

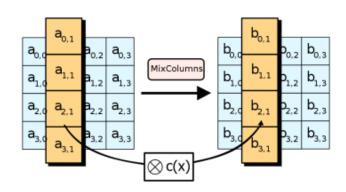
- **ASN** 1998
- Chiffrement symétrique
- Chiffrement par blocs (64 bits)
- Utilisation d'une clé de 168, 112 ou 56 bits
- Substitution et permutation
- 48 rondes équivalentes DES

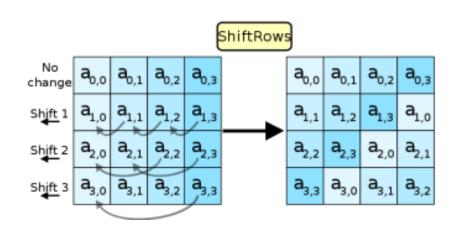
3 DES-Triple Data Encryption Standard

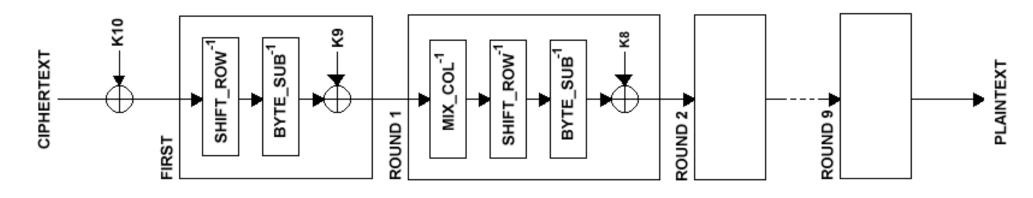
Chiffrement Symétrique

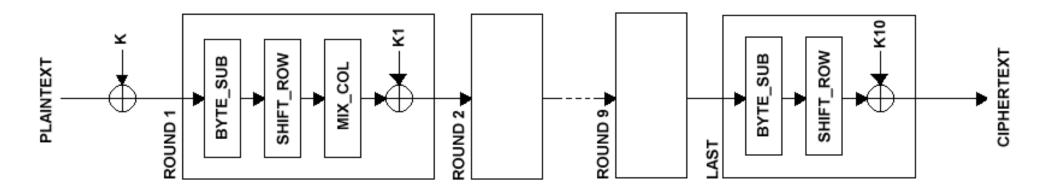

- Bilan
- DES / 3 DES
- AES


- AES ou Rijndael 2000 approuvé par la NSA
- Standard Chiffrement US
- Chiffrement symétrique
- Chiffrement par blocs (128 bits)
- Utilisation d'une clé de 128, 192 ou 256 bits
- Substitution et permutation
- 10,12 ou 14 rondes selon la taille de la clé









■ Bilan

- Difficile à casser (bruteforce).
- Simplicité des calculs → rapidité de traitement
- Besoin en ressource et en mémoire faible
- flexibilité d'implémentation (taille des blocs et des clés)
- Hardware et software
- Simplicité : le design de l'AES est relativement simple

Cryptologie et Applications

ANSSI (Agence Nationale de la Sécurité des Systèmes d'Information)

☐ Recommandation

• Algorithme: **AES**

■ Taille des clés min: 128bits

Chiffrement par bloc: 128bits

• Algo Chiffrement par flot: ChaCha20

Plutôt Bloc que Flot

Chiffrement Asymétrique

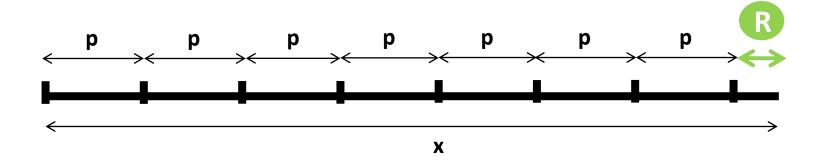
- Propriétés
- Diffie-Hellman
- RSA
- Courbe elliptique
- Bilan

Chiffrement asymétrique

- Plus lent que le chiffrement symétrique
- Consommateur de ressource
- Permet un passage à l'échelle
- Distribution de clé
- Utiliser pour la distribution de clés de session
- Exemples d'algorithmes de chiffrement
 - Diffie-Hellman
 - Rivest, Shamir, Adleman (RSA)
 - Courbe Elliptique
 - El Gamal
 - Digital Signature Algorithm (DSA)
 - Knapsak

Chiffrement Asymétrique

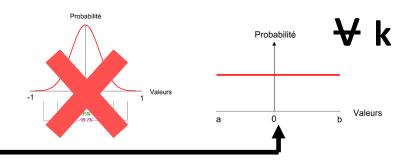
- Propriétés
- Diffie-Hellman
- RSA
- Courbe elliptique
- Bilan



Objectif

→ Trouver une fonction qui est rapide et facile dans un sens et lente et complexe dans l'autre

$$x \mod p \equiv \mathbb{R}$$



 $x \mod p$

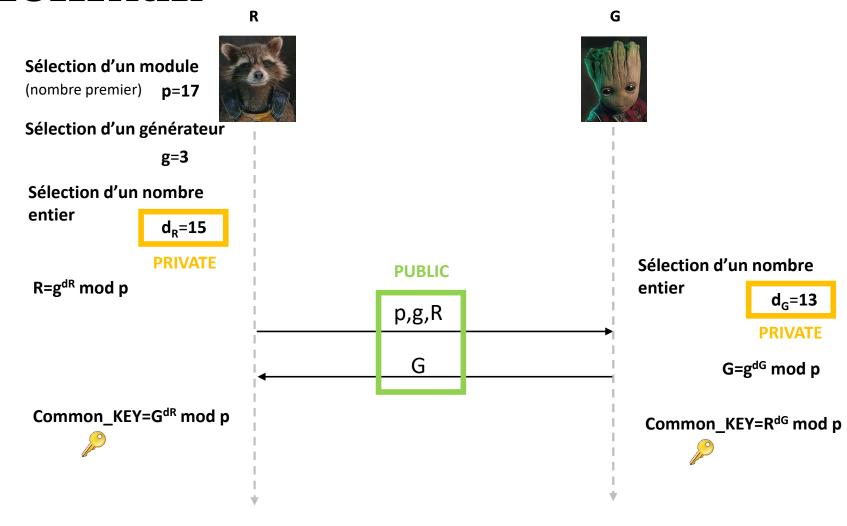
46 mod **12 ≡** 10

3^k mod 17 پ

3 Est un générateur 17 Est le module

$$3^{15} \mod 17 \equiv \mathbb{R} \longrightarrow \mathsf{EASY}!$$

Si module = nombre premier très grand


 $3^{15} \mod 17 \equiv \mathbb{R} \longrightarrow \mathsf{EASY}!$

HARD! → 3 mod 17 **=** 6

Problème des logarithmes discrets

Diffie-Hellman

Diffie-Hellman

R

 $d_R=15$

R=g^{dR} mod p

Common_KEY=G^{dk} mod p

 $(g^{d_G} mod p)^{d_R} mod p$

 $(g^{d_G \times d_R} mod p) mod p$

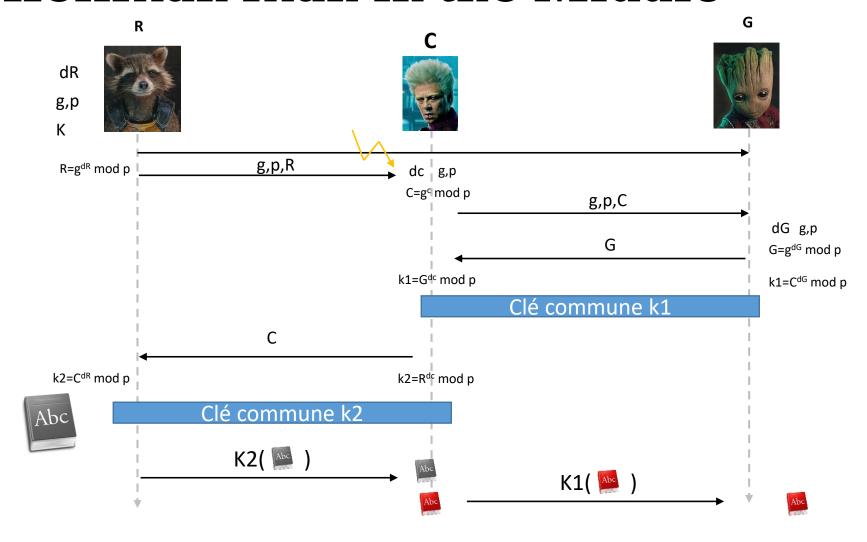
 $g^{d_G \times d_R} mod p$

G

 $d_G=13$

G=gdG mod p

Common_KEY=RdG mod p


 $(g^{d_R} mod p)^{d_G} mod p$

 $(g^{d_R \times d_G} mod p) mod p$

 $g^{d_R \times d_G} mod p$

Diffie-Hellman man in the Middle

Diffie-Hellman

- Vulnérable aux attaques Man in the middle
- Force de l'algorithme repose sur la difficulté du problème de logarithme discret retrouver ga, gb à partir de gab est très complexe
- Nécessiter de vérifier l'identité de son interlocuteur avant de prendre la clé publique

Chiffrement Asymétrique

- Propriétés
- Diffie-Hellman
- RSA
- Courbe elliptique
- Bilan

- Trouver une « one way function »
 - → Objectif utiliser l'exponentiation Modulaire

$$m^e \mod N \equiv \square \longrightarrow EASY!$$

HARD!
$$\leftarrow$$
 mod $N \equiv C$

- Trouver une « one way function »
 - → Objectif utiliser l'exponentiation Modulaire

. e mod N

- Trouver une « one way function »
 - → Objectif utiliser l'exponentiation Modulaire

$$m^e \mod N \equiv C$$

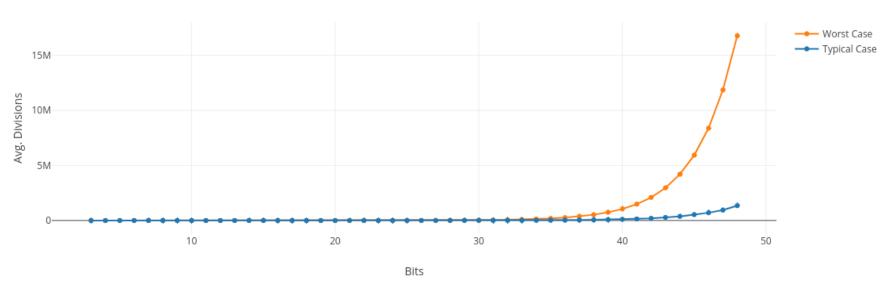
$$c^d \mod N \equiv m$$

$$m^{e^d} \mod N \equiv m$$

$$mod N \equiv C$$

Comment choisir d?

Prime Factorisation


écrire un nombre naturel supérieur à 1 sous la forme d'un produit de facteurs premiers.

$$P1 \times P2 = N$$

$$12 = 2 \times 2 \times 3$$
.

$$30 = 5 \times 3 \times 2$$

Worst Case vs. Typical Case

https://nestedsoftware.com/2018/12/18/big-o-prime-factors-and-pseudo-polynomial-time-55cp.69665.html

Cryptologie et Applications

RSA

- La fonction Phi ou indicateur d'Euler
- Propriétés:

ф(n)

 $\forall n \in \mathbb{N}^*$ $\phi(n) = vcard(\{m \in \mathbb{N}^* \mid m \le n, m \text{ premier avec } n\})$ $\phi(A \times B) = \phi(A) \times \phi(B)$

$$\phi(8) = 4$$

$$\phi(7) = 6$$

- La fonction Phi ou indicateur d'Euler **ф(n)**
- Calculer φ(n) est difficile sauf pour les nombres premiers :

$$\phi(Prime) = Prime - 1$$

$$\forall P1, P2 \ nombre \ premier$$

$$\phi(P1 \times P2) = \phi(P1) \times \phi(P2)$$

 $\phi(P1 \times P2) = (P1 - 1) \times (P2 - 1)$

- ф(n) La fonction Phi ou indicateur d'Euler
- Calculer φ(n) est difficile sauf pour les nombres premiers

$$\phi(P1 \times P2) = \phi(P1) \times \phi(P2) = \mathbb{R} \longrightarrow \mathsf{EASY} \ !$$

■ La fonction Phi ou indicateur d'Euler **ф(n)**

Comment utiliser $\phi(n)$ avec l'exponentiation modulaire $m^e mod n$?

Théorème d'Euler

$$m^{\phi(n)} \equiv 1 \mod n$$

Avec m et n sans facteur commun

$$1^{k} = 1 \qquad m^{k \times \phi(n)} \equiv 1^{k} \mod n$$

$$1 \times m = m \qquad m \times m^{k \times \phi(n)} \equiv m \times 1^{k} \mod n$$

$$m^{k \times \phi(n)+1} \equiv m \mod n$$

Hypothèse
$$n_{i}^{e_{i} \times d} \equiv m m_{i}^{e_{i} \times d}$$

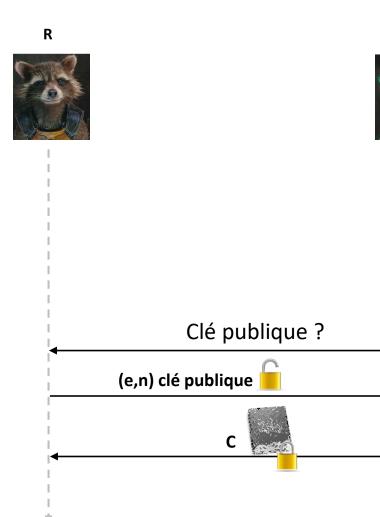
$$e \times d = k \times \phi(n) + 1$$

$$d := \frac{k \times \phi(n) + 1}{e}$$

Cryptologie et Applications

RSA

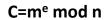
p et **q** pq=n


e aucun facteur commun avec (p-1)(q-1) $\rightarrow \phi(n)$

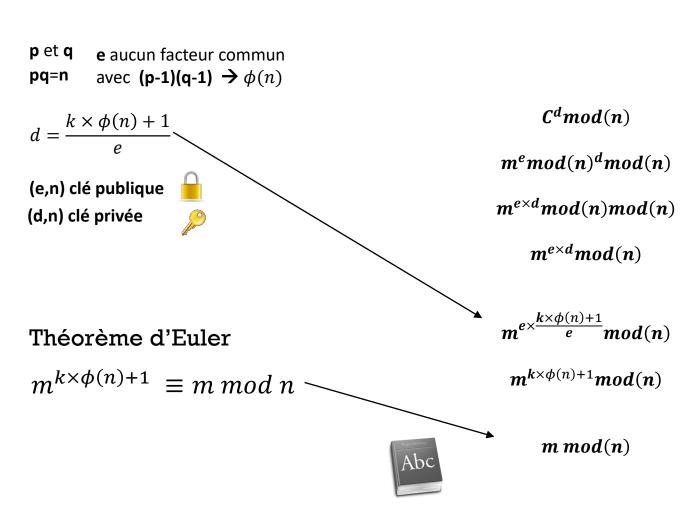
$$d = \frac{k \times \phi(n) + 1}{e}$$

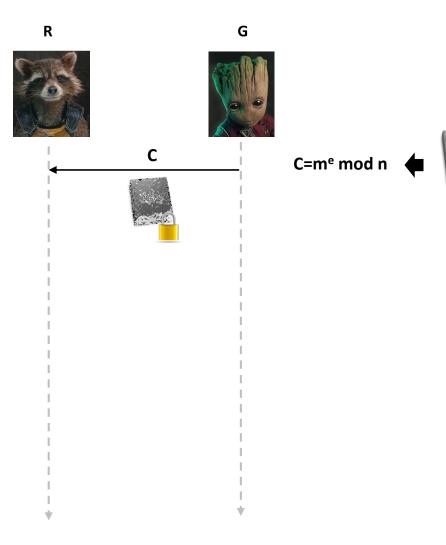
(e,n) clé publique

(d,n) clé privée

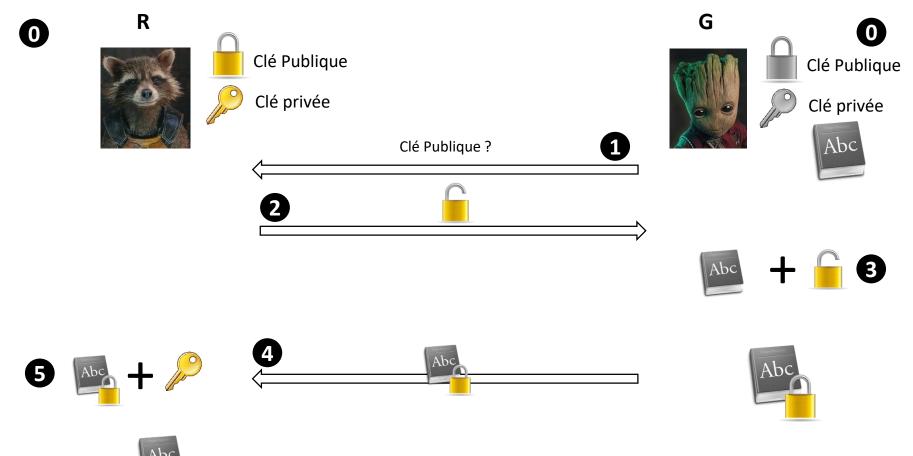


m





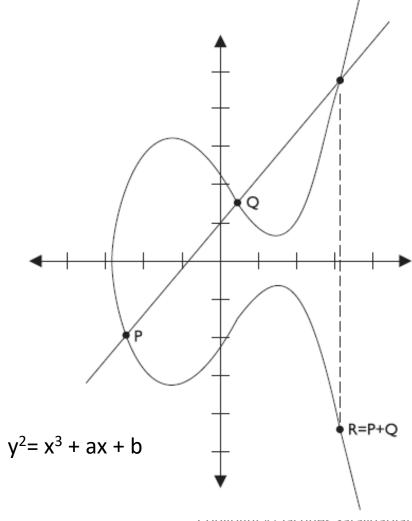
G



Cryptologie et Applications

Cryptologie et Applications

- Rivest, Shamir, Adleman
- Sélection des paramètres:
 - p et q choisis au hasard de façon à ce que p-q pas trop petit
 - p et q nombres premiers forts
 - p-1 possède un grand facteur premier
 - p+1 possède un grand facteur premier
- Peut être utilisé pour la signature numérique
- Force de l'algorithme repose sur la difficulté à factoriser n (calculer p et q)

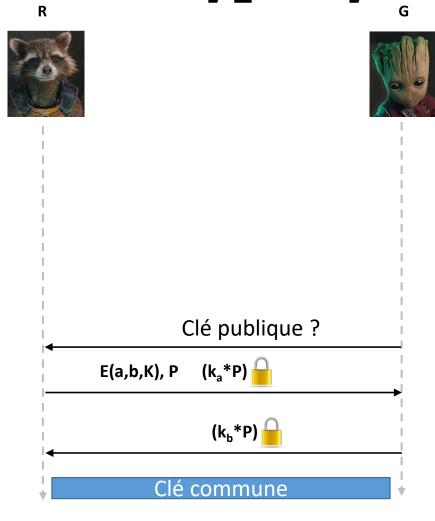


Chiffrement Asymétrique

- Propriétés
- Diffie-Hellman
- RSA
- Courbe elliptique
- Bilan

ECC Elliptic Curve Cryptosystem

ECC Elliptic Curve Cryptosystem


Choix d'une courbe elliptique **E(a,b,K)**

Choix d'un point **P** sur la courbe

Sélection d'un entier ka

(k_a*P) clé publique (k_a) clé privée

(k_ak_b)P clé commune

Sélection d'un entier k_h

(k_ak_b)P clé commune

ECC Elliptic Curve Cryptosystem

- Calcul d'une clé commune (semblable Diffie-Hellman)
- Complexité mathématique plus élevée que RSA pour cryptanalyse
- Taille de clé plus petite permettant d'assurer une sécurité
- équivalente à RSA (200 bits ECC contre 1024 bits pour RSA)
- Complexité des calculs peu élevée pour le calcul de la clé commune
- Beaucoup de brevets sur les courbes elliptiques dans la cryptographie (couteux)
- Théorie des courbes elliptiques encore récentes (trappes potentielles)

Cryptologie et Applications

ANSSI (Agence Nationale de la Sécurité des Systèmes d'Information)

- ☐ Recommandation
 - Algorithme:
 - Taille des clés min:
 - Propriétés:

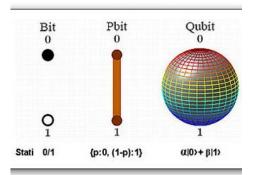
RSAES-OAEP,...

3072 bits

sous-groupes dont l'ordre est multiple d'un nombre premier d'au moins 256 bits (pour RSA)

Quel futur pour les algorithmes de chiffrement ?

- Comment casser un RSA ? Trouver p et q de n=p.q
- Trouver un a tel que a < N et relativement premier à N PGDC(a,N)=1,


Très long!

- Trouver r tel que r est la période de a mod N
- Vérifier que r est pair et $ar/2 + 1 \not\equiv 0 \mod N$

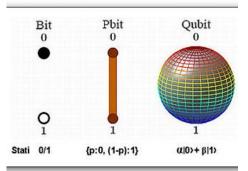
$$a^r \equiv 1 \mod N$$

 $a^r - 1 \equiv 0 \mod N \longrightarrow a^r - 1 \equiv k.N \longrightarrow (a^{\frac{r}{2}} - 1).(a^{\frac{r}{2}} + 1) \equiv k.p.q$

Résoudre

$$PGCD\left(\left(a^{\frac{r}{2}}-1\right),p\right)$$
 $PGCD\left(\left(a^{\frac{r}{2}}+1\right),q\right)$

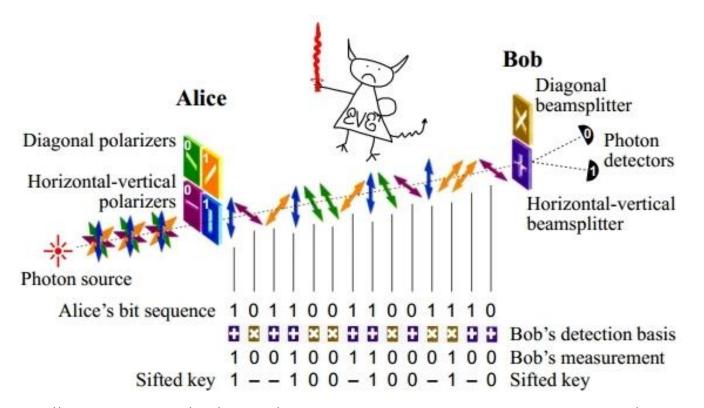
https://taglidotme.files.wordpress.com/20 13/10/qubit.jpg



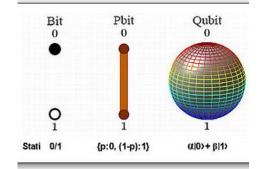
Quel futur pour les algorithmes de chiffrement ?

FACILE avec un ordinateur quantique

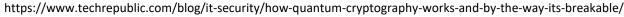
■ Trouver r tel que r est la période de a mod N



https://taglidotme.files.wordpress.com/20 13/10/qubit.jpg


Quel futur pour les algorithmes de chiffrement ?

■ Une nouvelle alternative : Quantum Key Distribution



http://qubitekk.com/wp-content/uploads/2015/12/QKD_product_small.jpg

https://taglidotme.files.wordpress.com/20 13/10/qubit.jpg

Chiffrement Asymétrique

- Propriétés
- Diffie-Hellman
- RSA
- Courbe elliptique
- Bilan

Bilan symétrique asymétrique

- Utilisation de système hybride
- Utilisation de la puissance des algorithmes asymétriques pour l'échange de clé
- Utilisation du chiffrement symétrique rapide pour chiffrer les contenus

- Propriétés
- MD5
- SHA

Fonction de hachage ou One Way Hash

Fonction capable à partir un élément de taille variable de fournir une valeur de taille fixe appelée empreinte ou hash.

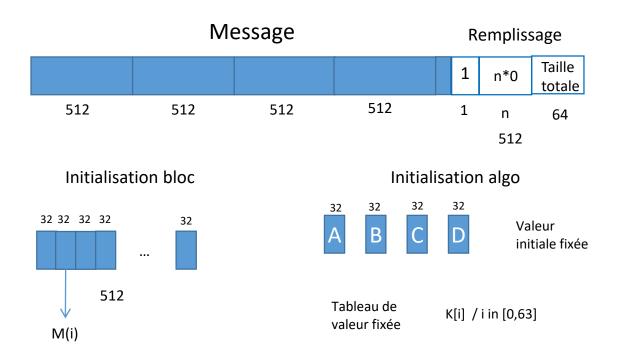
Utilisation de fonction à sens unique

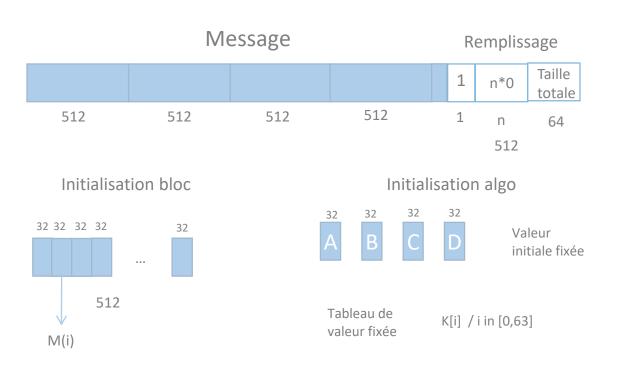
Fonction facile à calculer dans un sens mais très difficile à inverser

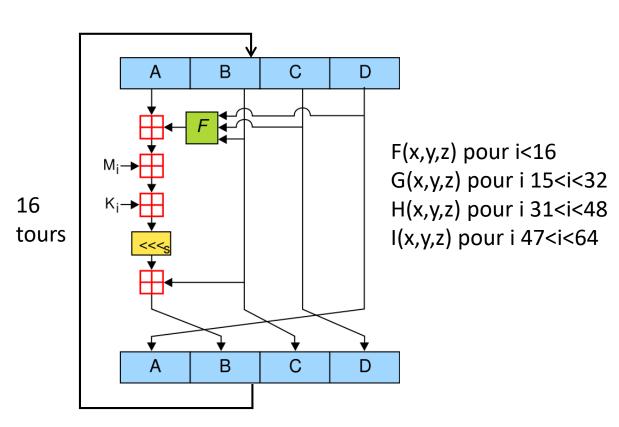
- Propriétés
 - Calcul rapide
 - Eviter les collisions (2 données différentes représentées par une même empreinte)
 - Possibilité d'avoir une empreinte plus grande que les données initiales (protection des mots de passe)
 - Volonté qu'un seul changement de bits entraine un changement important dans l'empreinte résultante

- Propriétés nécessaires pour la cryptographie
 - Très difficile de trouver un message à partir de son empreinte
 - Très difficile à partir d'un message et de son empreinte de générer un message différent possédant la même empreinte
 - Très difficile de trouver 2 messages aléatoires possédant la même empreinte
- Notion de salting (grain de sel)
 - Ajout d'une chaine pseudo-aléatoire au message avant le hash
 - e.g. password + MD5(login) -> SHA (password + MD5(login))
 - -> évite les attaques par table de hash.
 - -> Cf. Bcrypt

- ☐ Exemple de fonction de Hachage
 - HMAC
 - CBC-MAC
 - MD5
 - SHA
 - Bcrypt




- Propriétés
- MD5
- SHA



F(x,y,z)=(x AND y) OR (not(x) AND z) G(x,y,z)=(x AND z) OR (y AND not(z)) H(x,y,z)=x XOR y XOR zI(x,y,z)=x XOR (x AND not(z))

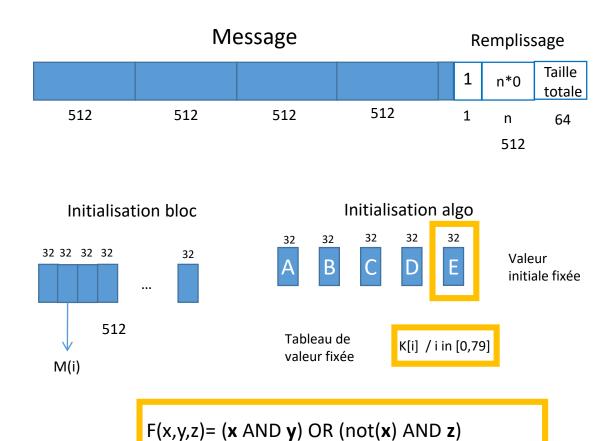
F(x,y,z)=(x AND y) OR (not(x) AND z) G(x,y,z)=(x AND z) OR (y AND not(z)) H(x,y,z)=x XOR y XOR zI(x,y,z)=x XOR (x AND not(z))

MD5(" The quick brown fox jumps over the lazy dog ") 9e107d9d372bb6826bd81d3542a419d6

Cryptologie et Applications

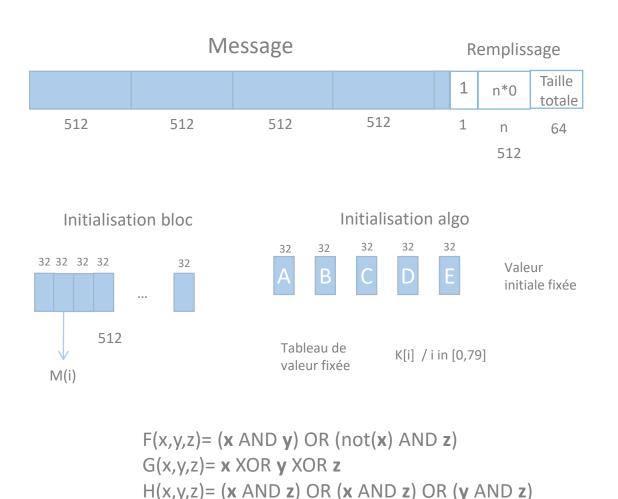
MD5

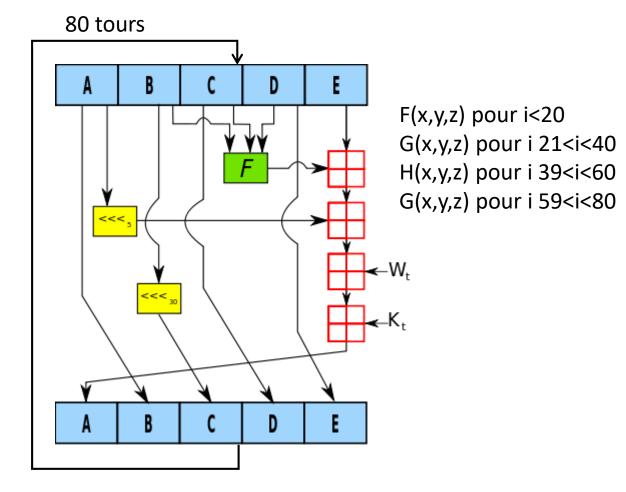
- ☐ Message Digest 5
- ☐ Ronald Rivest 1991
- ☐ 1996 faille grave de collisions
- ☐ 2004 découvert des collisions complètes → SHA 256



- Propriétés
- MD5
- SHA

Fonctions de Hachage: SHA




H(x,y,z)=(x AND z) OR (x AND z) OR (y AND z)

G(x,y,z) = x XOR y XOR z

Fonctions de Hachage: SHA

SHA

- Message Digest 5
- Ronald Rivest 1991
- 1996 faille grave de collisions
- 2004 découvert des collisions complètes → SHA-2/3 >= 256

Algorithm and variant		Output size (bits)	Block size (bits)	Rounds	Operations	Security against collision attacks (bits)	Security against length extension attacks (bits)	First published
MD5 (as reference)		128	512	64	And, Xor, Rot, Add (mod 2 ³²), Or	≤ 18 (collisions found)[60]	0	1992
SHA-0		160	512	80	And, Xor, Rot, Add (mod 2 ³²), Or	< 34	0	1993
SHA-1		160	512	80	And, Xor, Rot, Add (mod 2 ³²), Or	< 63	Ü	1995
SHA-2	SHA-256	256				128	0	2001
	SHA-512	512	1024	80	And, Xor, Rot, Add (mod 2 ⁶⁴), Or, Shr	256	0[62]	2001
	SHA- 512/256	256	1024	80	And, Xor, Rot, Add (mod 264), Or, Shr	128	256	2012
SHA-3	SHA3-256 SHA3-512	256 512	1088 576	24	And, Xor, Rot, Not	128 256	512 1024	2015

Bcrypt

- Niels Provos, David Mazières 1999
- Stockage de mots de passe (usage principal)
- Usage de grain de sel (protection contre Rainbow tables)
- Fonction adaptative (augmentation du nombre d'itérations possible)
- Basé sur l'algorithme de chiffrement de Blowfish

Bilan

- MD5 et SHA1 encore très utilisés
- Préférable d'utiliser SHA256
- Permettent d'assurer l'intégrité d'un document
- Utilisées pour la signature numérique conjointement avec le chiffrement asymétrique
- Utilisées pour protéger du contenu stocké
- Ancienne version linux/Windows -> MD5
 - Possible de préciser la méthode

password sufficient pam_unix.so min=4 sha256

Cryptologie et Applications

ANSSI (Agence Nationale de la Sécurité des Systèmes d'Information)

- ☐ Recommandation
 - Fonction de hachage
 - Algorithme: SHA-2, SHA-3
 - Taille de sortie ≥ 256
 - Stockage des mots de passes
 - Algorithme: **PBKDF2** (RFC8018)
 - Usage: grain de sel et fonction de hash >128bits

Bilan Eléments Chiffrement

Bilan éléments chiffrement

Algorithm Type	Encryption	Digital Signature	Hashing Function	Key Distribution
Asymmetric Key Algorithms				
RSA	X	X		X
ECC	X	X		X
Diffie-Hellman				X
El Gamal	X	X		X
DSA		X		
LUC	X	X		X
Knapsack	X	X		X
Symmetric Key Algorithms				
DES	X			
3DES	X			
Blowfish	X			
IDEA	X			
RC4	X			
SAFER	X			
Hashing Algorithms				
Ronald Rivest family of hashing functions: MD2, MD4, and MD5			Х	
SHA			X	
HAVAL (variable-length hash values using a one- way function design)			X	

ANSSI Guide de sélection d'algorithmes Cryptographiques (2021)

https://www.ssi.gouv.fr/uploads/2021/03/anssi-guide-selection_crypto-1.0.pdf

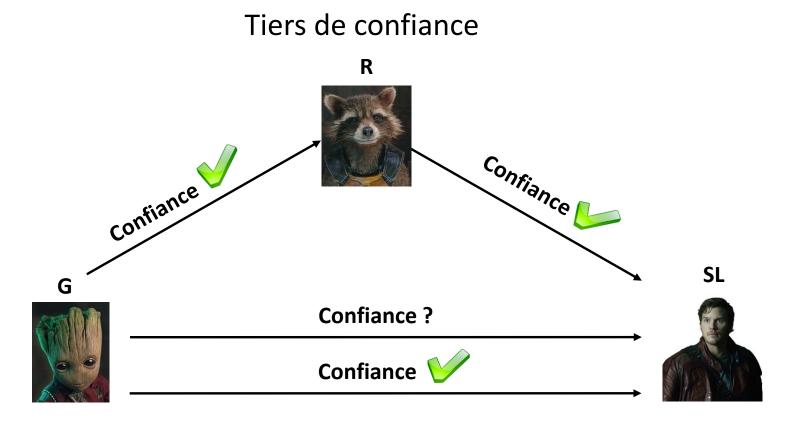
PKI: Public Key Infrastructure

- Besoin et définition
- Architecture
- Bilan

PKI: Besoins

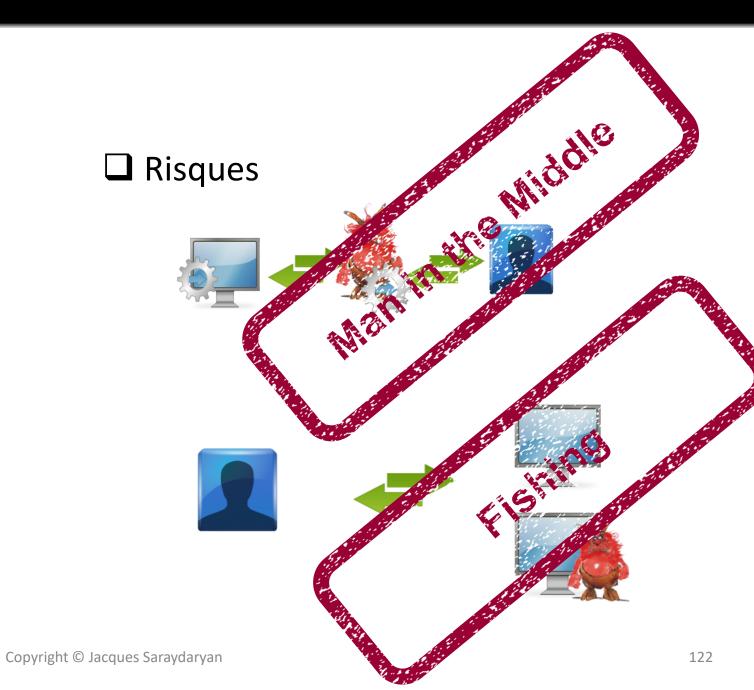
Comme faire confiance à son interlocuteur ?

Comment s'assurer que son interlocuteur est bien là personne qu'elle prétend être ?



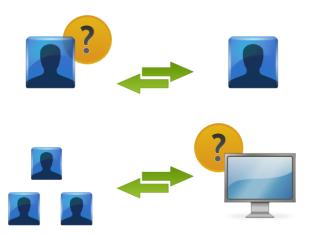
Utilisation d'un Tiers de confiance

PKI: Besoins



PKI: Risques

☐ Objectif



PKI: Risques

- Comment assurer son identité visà-vis d'un tiers ?
- Comment assurer que des entités sont bien celles qu'elles prétendent être?

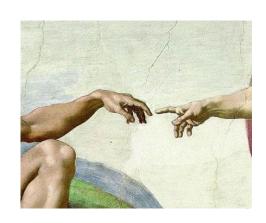
- Une « autorité de confiance » signe avec sa clé privée un document contenant
 - L'identité d'une entité possédant un couple de clé
 - La clé publique
 - Des informations décrivant l'usage de cette clé

PKI: Usage

- ☐ Qui utilise les certificats ?
 - IPSec
 - SSL
 - S/MIME (PGP)
 - Signature de code de package (Java, Javascript, ActiveX,...)
 - Signature de formulaire,...
- ☐ Format de type de certificats
 - X509 PKIX (UIT, 1988, RFC 5280)
 - PKCS (rsa)
 - PGP (Phil Zimmermann, 1991, GnuPG)
 - SPKI/SDSI (IETF,1996, RFC 2692, RFC 2693)

PKI: Les acteurs

Les utilisateurs (homme, machine, service)


Entités utilisant les certificats afin de vérifier l'identité d'autres utilisateurs mais aussi afin de connaitre la clé publique des ces derniers

☐ L'autorité de certification — Certification Authority (CA)

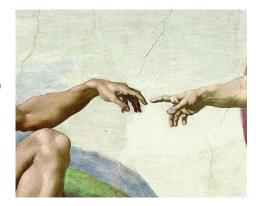
Entité de confiance délivrant et révoquant des certificats (certificats à clé publique)

☐ L'autorité d'enregistrement — Registration Authority (RA)

Entité en qui le CA a confiance pour vérifier l'identité de l'utilisateur

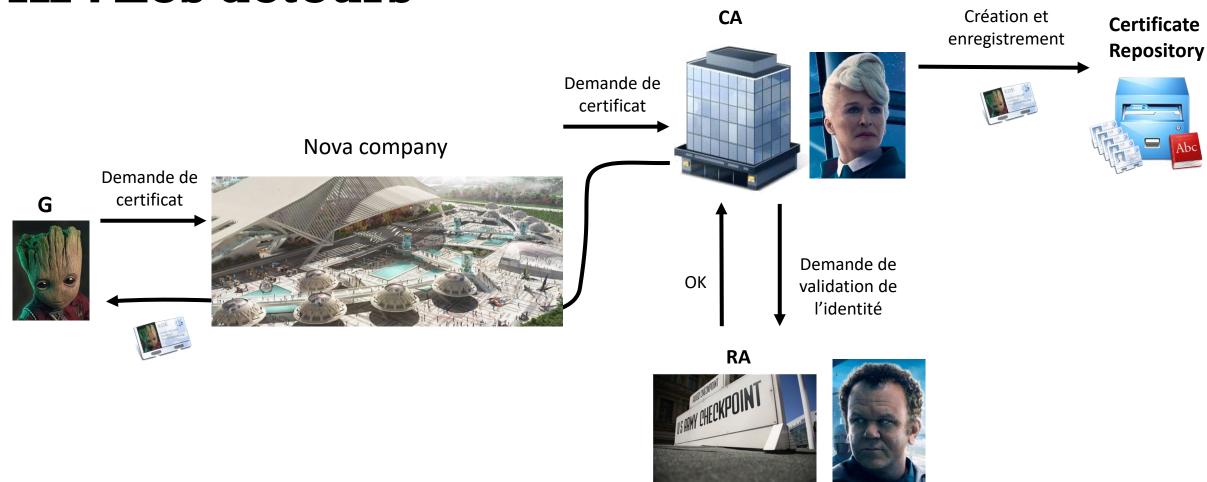
PKI: Les acteurs

☐ Certificat


Object représentant l'identité d'un utilisateur et contenant la clé publique de ce dernier

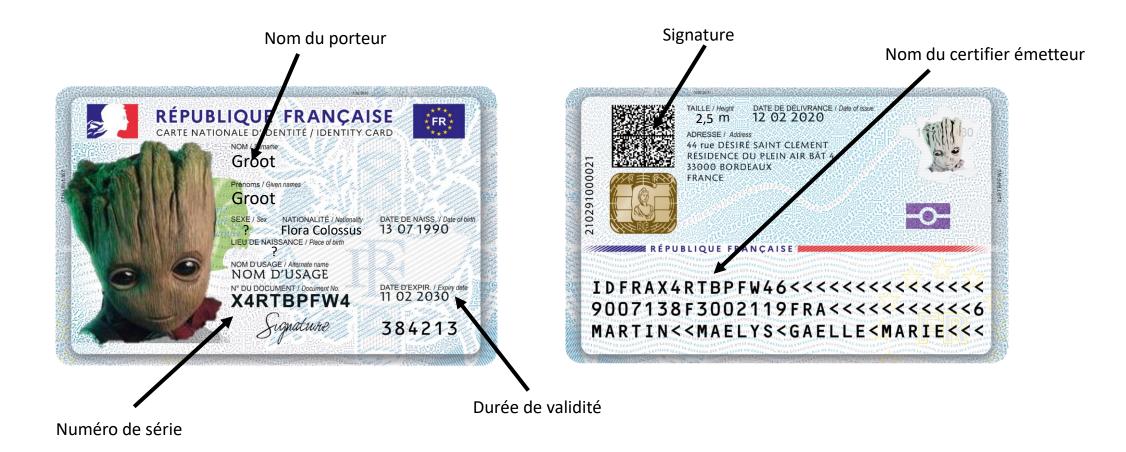
☐ Annuaire de certificats -Certificate Repository

Object regroupant l'ensemble des certificats et des listes de révocation et les rend publique


☐ Liste de révocation des certificats — Certificate Revocation List (CRL)

Object regroupant l'ensemble des certificats révoqués

PKI: Les acteurs


PKI: Contenu d'un certificat

- Numéro de série
- Identité du porteur (owner)
- Identité du certifier émetteur (issuer)
- Période de validité (début-fin)
- Classe de certificat
- Clé public du porteur (+algo utilisé, longueur des clés,...)
- Signature (+algo utilisé, longueur des clés,...), auto-signé ou non

PKI: Contenu d'un certificat

- + Classe
- + Clé publique du porteur

PKI: Contenu d'un certificat

Data: Version: 3 (0x2) Numéro de série Serial Number: 1 (0x1) Signature Algorithm: sha1WithRSAEncryption Nom du certifier Issuer: C=FR, ST=Rhone Alpes, L=Villeurbanne, O=INSA-LYON, OU=Dept Telecom, CN=CA/emailAddress=mitsuco26@hotmail.com émetteur Validity Durée de validité Not Before: Jun 9 08:43:11 2011 GMT Not After: May 9 08:43:11 2013 GMT Subject: C=FR, ST=Rhone Alpes, L=Villeurbanne, O=INSA-LYON, Nom du porteur OU=Dept Telecom, CN=serveur radius/emailAddress=mitsuco26@hotmail.com Subject Public Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (1024 bit) Clé publique du Modulus (1024 bit): porteur 00:b8:d1:ce:aa:e7:36:07:7f:46:5d:15:8d:24:25: a7:2b:08:7d:5d:2c:78:21:94:8d:f0:c3:99:dd:d9: 18:8d:7d:89:5c:7a:43:b8:a5:4c:2c:69:db:49:4b: e1:ea:9f:83:59:53:6b:6f:da:9e:5a:d3:ac:46:2f: 33:21:50:ac:f3:cc:c2:27:6e:e2:f2:d4:50:4d:fb: f1:15:4f:3e:60:9b:07:6a:6c:65:17:bd:7c:c2:f7: a1:d5:25:2f:23:35:39:d1:1f:ff:66:4e:ff:d6:7b: 04:50:e0:12:6e:71:7e:f3:bf:01:3a:d2:29:4a:bd: 7d:e1:89:9c:bf:1e:4a:60:99 Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Authority Key Identifier:
keyid:30:5B:05:AA:6E:D3:AE:2D:CD:45:25:05:0A:1F:A0:68:62:E5:67:7
X509v3 Subject Key Identifier:
54:52:FF:F4:94:39:18:5F:0A:9D:51:5C:AD:01:39:35:78:39:6F:35

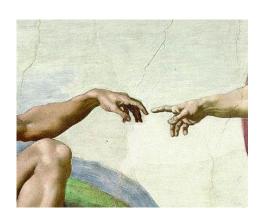
Classe
X509v3 Key Usage:
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:

SSL Server

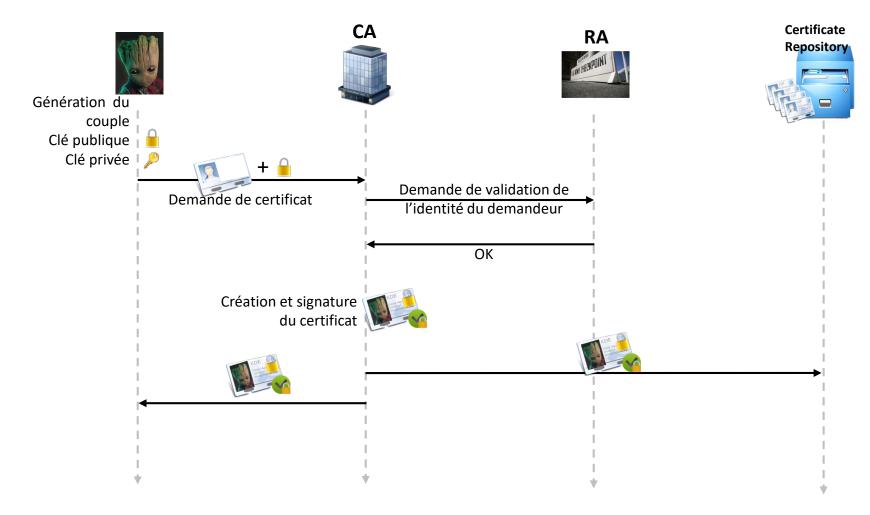
TLS Web Server Authentication, TLS Web Client

Netscape Comment: Certificat delivre par Dept Telecom
Signature Signature Algorithm: sha1WithRSAEncryption

Authentication


Netscape Cert Type:

Signature Algorithm: sha1WithRSAEncryption
14:d2:ca:7d:66:5e:73:50:e3:28:14:30:cc:8c:ce:29:a8:d0:
2c:fc:bd:ed:55:8c:60:43:c4:dc:1b:c9:6c:ef:59:ae:a8:54:
e7:fa:e0:16:3b:2e:27:80:97:3c:f2:35:82:eb:4d:b3:33:ee:
19:78:7e:f2:51:be:75:5f:78:32:23:65:9e:7f:f8:65:41:90:
9c:41:6e:5d:5a:8c:94:52:06:e8:5c:b5:c1:d2:35:8d:90:37:
1d:50:1e:7e:91:2b:67:b0:bf:c3:94:8e:0a:f5:54:3d:57:7b:


PKI: Génération pair de clés

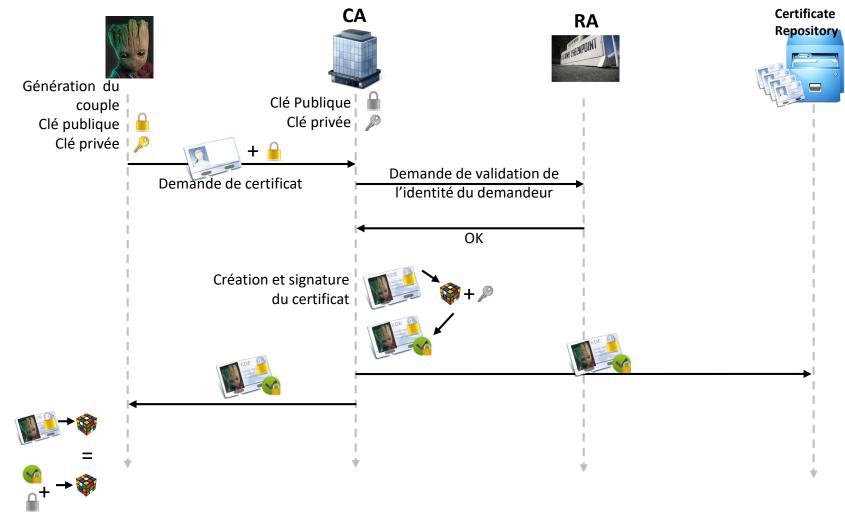
- ☐ Par le client
 - Pas de communication de clés privées
 - CA ne connait pas la clé (perte de clé? Départ?)
- ☐ Par le CA
 - Génération de clés plus sur (complexité, nombres aléatoires)
 - Archivage de la clé privée
 - Historique des paires de clés
 - Doit transmettre de façon sécurité la clé privée

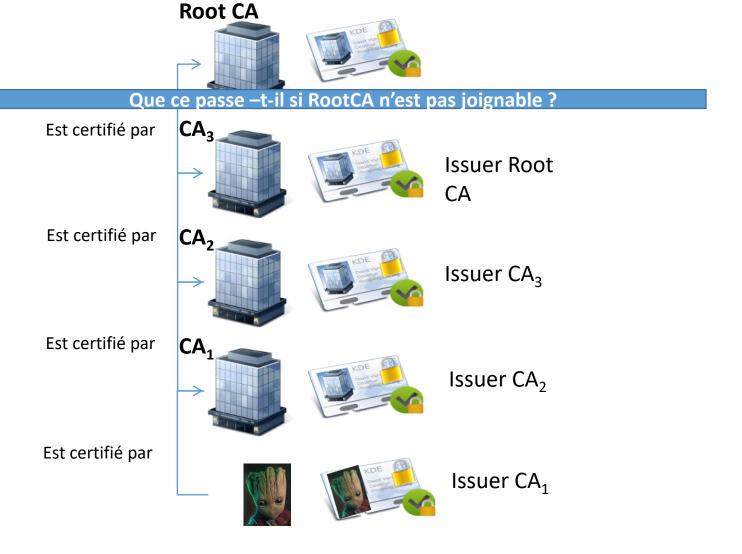
PKI: Cycle de vie

PKI: Certification des certificats A vous de jouer

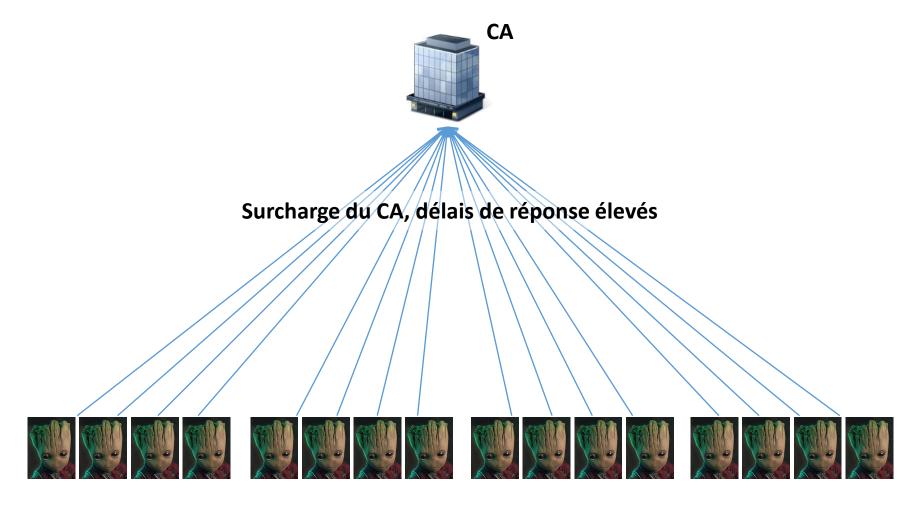
1. Comment le CA fait –il pour certifier le certificat ?

2. Comment l'utilisateur peut –il être sur de communiquer avec le CA?

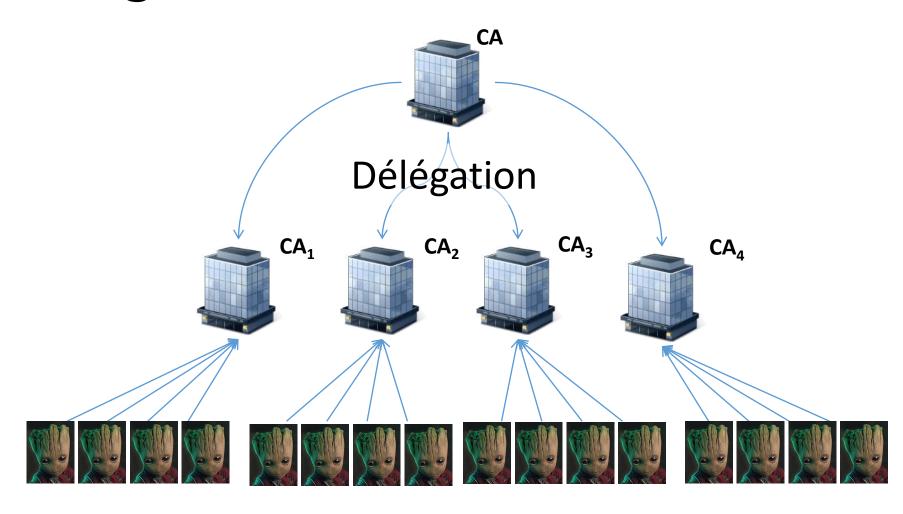

3. Comment l'utilisateur est sur que son certificat n'a pas été modifié et provient bien du CA ?



PKI: Cycle de vie



PKI: Chaine de certification



PKI: Délégation

PKI: Délégation

PKI: Génération pair de clés

- ☐ Organisme publique
 - Pas gratuit
 - Verisign, Thawte, Entrust, Baltimore
 - Certinomis (la poste, chambre du commerce,...)
 - Certplus (Verisign, Matra, France Telecom, Gemplus)
 - → Reconnaissance externe, internationale

☐ Locale privée

- Gestion de sa propre autorité de certification
- Périmètre de reconnaissance limitée
- Flexibilité de gestion
- Openssl, OpenCa, IDX-PKI, iPlanet Certificate Manager server

PKI: Certification des certificats A vous de jouer

1. A quelle problématique réponds les PKI

2. Quelles objectifs de sécurité permettent d'assurer les certificats?

PKI: Le contenu de vos postes

Demo

Sécurité Internet

- HTTPS/Secure HTTP
- Secure Electronic Transaction
- SSH

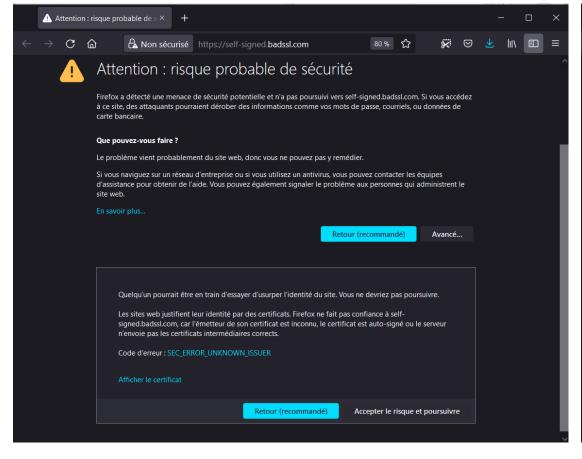
Sécurité Internet : HTTPS

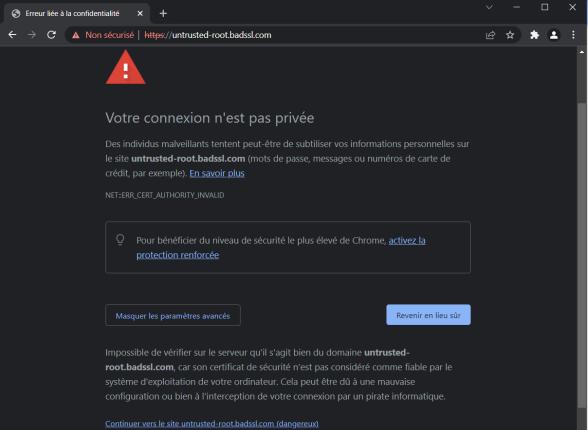
- Besoin comment sécuriser des communications sur internet sécurisée ?
 - → utilisation de http over SSL/TLS → HTTPS
- Nouveau port de communication 443 (http port 80)
- SSL utilise le chiffrement asymétrique afin de fournir
 - Chiffrement de données (via une clé de session)
 - L'authentification du serveur (et celle du client optionnelle)
 - L'intégrité des données

Sécurité Internet: HTTPS

- Pourquoi toutes les communications ne sont pas en HTTPS ?
 - Consommation de ressources (liée au chiffrement asymétrique)
 - Certificat du server web (coût)
 - Communications plus lentes (liées au chiffrement)

Sécurité Internet : HTTPS

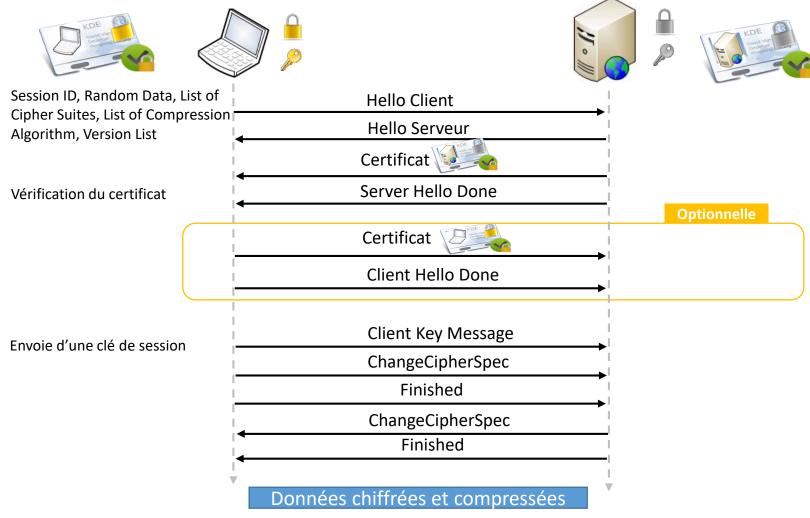

Le maillon faible



VOUS!

Sécurité Internet : HTTPS

Sécurité Internet: HTTPS


■ TLS Transport Layer Security anciennement (SSL Secure Socket Layer)

Application	
Présentation	HTTPS
Session	CCL /TLC
Transport	SSL/TLS TCP
Réseau	IP
Liaison	
Physique	

Sécurité Internet : HTTPS- SSL/TLS

Sécurité Internet: HTTPS-SSL/TLS

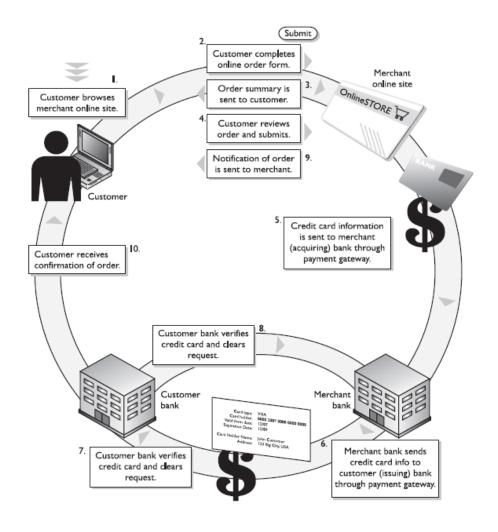
Demo wireshark

Sécurité Internet

- HTTPS/Secure HTTP
- Secure Electronic Transaction
- SSH

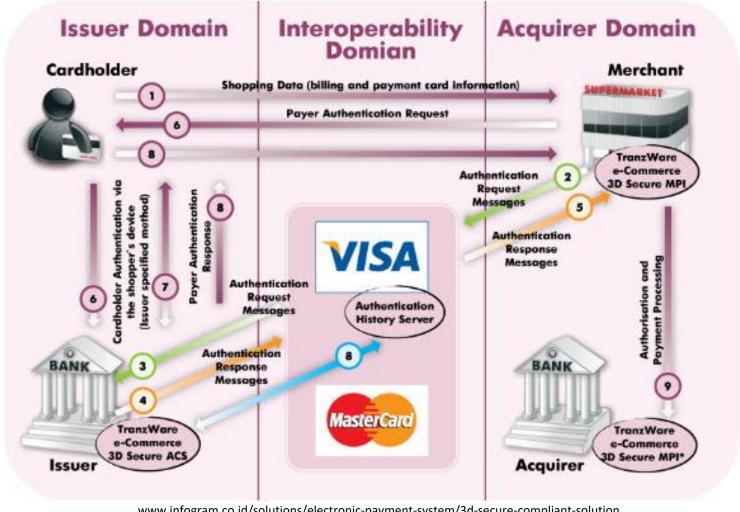
Secure Electronic Transaction

- 1996 VISA/MasterCard
- Objectif: Sécuriser les transactions bancaires sur un réseau non sécurisé
- Repose essentiellement sur le chiffrement asymétrique et la signature numérique
- Permet d'assurer l'authenticité des utilisateurs, la confidentialité de l'information et l'intégrité du paiement


Secure Electronic Transaction

- Les entités
 - Banque du demandeur (issuer)
 - L'utilisateur de la carte de crédit (Cardholder)
 - Marchand (merchant)
 - Banque du marchand (Acquierer)
 - Passerelle de paiement (Payment gateway)

Secure Electronic Transaction


3D-Secure

- VISA/MasterCard
- Objectif: Autorisation financière avec authentification en ligne
- Actuellement le système de paiement le plus utilisé

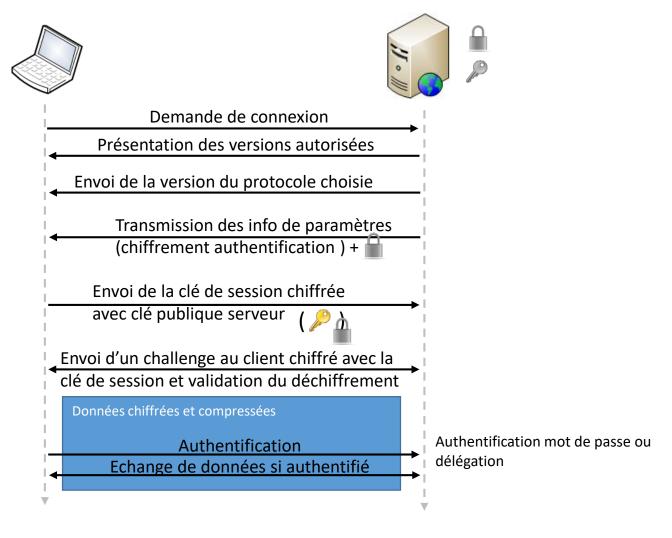
3D-Secure

Sécurité Internet

- HTTPS/Secure HTTP
- Secure Electronic Transaction
- SSH

Secure Shell - SSH

- Protocole de communication V1 (1995), V2 (2006)
- Utilisation du port 22
- Mode client serveur
- Redirection de port (forwarding)
- Objectif
 - Chiffrer et compresser un canal de communication
 - Ensemble d'outils permettant de remplacer des outils de connexions non sécurisés (rpc, rlogin, rsh, telnet)
 - Mots de passe et données chiffrés lors de la communication


Secure Shell - SSH

- Exemple d'utilisation d'algorithme sous linux
 - Chiffrement asymétrique
 - RSA, DSA
 - Chiffrement symétrique
 - 3DES, Blowfish, AES...
- Gestion de l'authentification
 - Possibilité d'activer le support de l'interface PAM (Pluggable Authentication Modules)

Secure Shell - SSH

Cryptologie et Applications

Conclusion

Questions?

